Diophantine triples and construction of high-rank elliptic curves, by Andrej Dujella

Using the theory of Diophantine m-tuples, i.e. sets with the property that the product of its any two distinct elements increased by 1 is a perfect square, we construct an elliptic curve over Q(t) of rank at least 4 with three non-trivial torsion points. By specialization, we obtain an example of elliptic curve over Q with torsion group Z/2Z * Z/2Z whose rank is equal 7.

Andrej Dujella <duje@math.hr>