Extensions of number fields with wild ramification of bounded depth, by Farshid Hajir and Christian Maire

Abstract: We consider p-extensions of number fields such that the filtration of the Galois group by higher ramification groups is of prescribed finite length. We extend well-known properties of tame extensions to this more general setting; for instance, we show that these towers, when infinite, are ``asymptotically good'' (an explicit bound for the root discriminant is given). We study the difficult problem of bounding the relation-rank of the Galois groups in question. Results of Gordeev and Wingberg imply that the relation-rank can tend to infinity when the set of ramified primes is fixed but the length of the ramification filtration becomes large. We show that all p-adic representations of these Galois groups are potentially semistable; thus, a conjecture of Fontaine and Mazur on the structure of tamely ramified Galois p-extensions extends to our case. Further evidence in support of this conjecture is presented.

Farshid Hajir and Christian Maire <fhajir@csusm.edu,maire@math.u-bordeaux.fr>