MATH 550 COMPREHENSIVE EXAMINATION
August 2006

ORDINARY DIFFERENTIAL EQUATIONS AND DISCRETE MAPS
DO ALL PROBLEMS.

1. Area preserving map
Consider the following map \(f \) of the 2-torus \(T^2 \) defined by
\[
 f(x, y) = (x + y, x + 2y) \mod 1 \quad \text{for} \ 0 \leq x, y < 1.
\]

a) Show that \(f \) is area-preserving.
b) Show that \(f \) has a countable infinity of periodic points.
c) Show that the periodic points of \(f \) are dense in \(T^2 \).

2. Hamiltonian systems and area-preserving flows
Consider the following system of first order ordinary differential equations:
\[
dx/dt = f(x, y) \quad \text{and} \quad dy/dt = g(x, y)
\]
where \(f \) and \(g \) are of class \(C^\infty \) and satisfy \(\partial f/\partial x + \partial g/\partial y = 0 \) for all \((x, y)\) in the plane.

a. Show that the local flow of the vector field \((f, g)\) is area-preserving.
b. Show that there is a \(C^\infty \) real valued function \(F \) (the Hamiltonian) such that
\[
f = \partial F/\partial y \quad \text{and} \quad g = - \partial F/\partial x.
\]
c. If \(f \) and \(g \) are defined by \(f(x, y) = 3x^2y^2 \) and \(g(x, y) = -2xy^3 - 3 \), find \(F(x, y) \).

3. Let \(f(x) = x^{2/3} \) for \(x \neq 0 \) and \(f(0) = 0 \).
 a. Decide whether the initial value problem \(\frac{dx}{dt} = f(x), \ x(0) = 0 \) has a unique solution.
 b. Can any solution of the initial value problem with \(x(0) \neq 0 \) become unbounded in \(x \) as \(t \) increases?
 c. Are solutions of the initial value problem with \(x(0) \neq 0 \) defined for all time?

4. Let \(f(x) = x^{2/3} \sin (1/x) \) for \(x \neq 0 \) and \(f(0) = 0 \).
 a. Decide whether the initial value problem \(\frac{dx}{dt} = f(x), \ x(0) = 0 \) has a unique solution. If the solution is unique, then prove it. If not, prove it.
 b. What conditions does \(f \) satisfy in a neighborhood of the origin?
 c. Can any solution of the initial value problem with \(x(0) \neq 0 \) become unbounded in \(x \) as \(t \) increases?
 d. Are solutions of the initial value problem with \(x(0) \neq 0 \) defined for all time?