Comprehensive Exam in PDE's - August 2007

Problem 1:

Let \(G(\rho) = \rho(1 - \rho/\rho_{\text{max}}) \), where \(\rho_{\text{max}} \) is a given constant. Using the method of characteristics for quasilinear first order equations, solve

\[
G(\rho)_x + \rho_y = 0 \quad \text{for } x \in \mathbb{R}, 0 < y < 2,
\]

given initial data

\[
\rho(x, 0) = \begin{cases}
\rho_{\text{max}}/2 & \text{for } -1 < x < 0, \\
0 & \text{otherwise.}
\end{cases}
\]

A good way to present the solution is to sketch the projected characteristics. Be sure to show any shock curves or rarefaction fans, with justification. You are not required to find a formula for the whole solution, though.

(ii) What happens at \(y = 2 \) that changes the solution? (Give a one sentence answer.)
Problem 2 (25 points)

Suppose u is harmonic and non-negative on \mathbb{R}^n.

i) Show, by using the Poisson formula for the ball, that for each $\zeta > 0$,

$$\frac{R^{n-2}(R - |\zeta|)}{(R + |\zeta|)^{n-1}}u(0) \leq u(\zeta) \leq \frac{R^{n-2}(R + |\zeta|)}{(R - |\zeta|)^{n-1}}u(0) \quad \text{for } |\zeta| < R.$$

ii) Show that if u is harmonic and non-negative on \mathbb{R}^n then u must be constant.

iii) Use (ii) to deduce the following slight generalization of Liouville's theorem: If $v : \mathbb{R}^n \to \mathbb{R}$ is harmonic and either bounded from below or from above, then v is constant.

Hint: The Poisson kernel is given by

$$K(x, \xi) = \frac{R^2 - |\xi|^2}{R \omega_n |x - \xi|^n}$$

where ω_n is the area of the $(n-1)$ sphere.
Problem 3. An Inverse Wave Problem
Let \(G(x, t) = \frac{1}{2} \chi_{[-t,t]}(x) H(t) \). Recall that \(\chi_A \), the characteristic function of a set \(A \) is defined to be

\[
\chi_A(x) = \begin{cases}
1 & x \in A \\
0 & x \notin A
\end{cases}
\]

and the Heaviside function \(H(t) \) to be

\[
H(t) = \begin{cases}
1 & t > 0 \\
0 & t \leq 0
\end{cases}
\]

(i) Show that (in the sense of distributions) \(G(x, t) \) solves

\[
G_{tt} - G_{xx} = \delta(x) \delta(t)
\]

Be sure to state clearly what it means for \(G \) to satisfy the above equation in the sense of distributions. You will find it easier to work in characteristic coordinates.

(ii) Show that

\[
U(x, t) = \int G(x - x', t) g(x') dx'
\]

is a classical solution of

\[
U_{tt} - U_{xx} = 0
\]

if \(g \) is \(C^1 \). What initial conditions does it satisfy?

(iii) Using (i) and (ii) derive the D'Alembert solution to the one dimensional wave equation on the whole line for general initial data.
Problem 4: Maximum Principle

(i) Suppose that \(u(x,t) \) satisfies a linear PDE with vanishing boundary conditions, and that this evolution is NOT positivity preserving: there exists initial data \(f(x) = u(x,0) \geq 0 \) such that \(u(x,t) < 0 \). Show that the linear PDE does not satisfy the maximum principle.

(ii) Solve the equation

\[
 u_t = \left(\frac{\partial^{2008} u}{\partial x^{2008}} + \frac{\partial^{2008} u}{\partial y^{2008}} \right) \quad u(x,y,0) = g(x,y)
\]

via Fourier transform. Write your solution in the form of a convolution of the initial data \(g(x,y) \) with a kernel \(K(x,y,t) \).

(iii) Show that a necessary condition for the above equation to be positivity preserving is that the kernel \(K(x,y,t) \) be strictly positive.

(iv) Show that the kernel \(K(x,y,t) \) is not a strictly positive function and conclude that the evolution above does not have a maximum principle.

Hint: Consider \(\int x^k K(x,y,t) dx dy \) for appropriate \(k \). What does this tell you about the kernel?