COMBINATORICS COMPREHENSIVE - Fall 2007

Submit only FIVE problems from Part I and THREE problems from Part II; 80 points possible. Passing requires good performance on both Parts. Justify answers; GIVE CLEAR STATEMENTS of any theorems you use.

Part I

1. By counting a set in two ways, prove that \(\sum_{i=1}^{n} i(n - i) = \sum_{i=1}^{n} \binom{i}{2} \).

2. Let \(\{a\} \) satisfy \(a_n = 3a_{n-1} - 2a_{n-2} + 2^n \) for \(n \geq 2 \), with \(a_0 = a_1 = 1 \). Express the generating function for \(\{a\} \) as a ratio of two polynomials. Obtain a formula for \(a_n \) as a function of \(n \).

3. Use generating functions to evaluate the sum \(\sum_{k=0}^{r} (-1)^k \binom{n}{k} \binom{n}{r-k} \).

4. Suppose we roll a six-sided die until each of the numbers one through five have appeared at least once. What is the probability that we succeed sometime during the first \(n \) rolls?

5. Let \(S \) be a set of permutations of \([n]\). Prove that if \(|S| \leq n/2 \), then some permutation of \([n]\) differs in every position from every member of \(S \). (Hint: Model this using a graph problem.)

6. Let \(G \) be a \(k \)-regular graph with connectivity 1. Determine \(\chi'(G) \).

7. Use Euler's Formula to count the regions determined by a configuration of \(n \) lines in the plane when every two lines cross but no three lines have a common point.

Part II

8. Prove that \(2m - 1 \) is the minimum \(t \) such that every 2-coloring of \(E(K_{t,t}) \) has a monochromatic connected subgraph with \(2m \) vertices.

9. Consider a red/blue-coloring of the edges of a complete graph with more than \(m^2 \) vertices. Suppose that the red graph has a transitive orientation. Prove that the coloring has a monochromatic complete subgraph of order \(m + 1 \). (Hint: Use posets.)

10. Let \(G \) be a bipartite graph with \(n \) vertices in which every vertex is given a list of more than \(\log_2 n \) usable colors. Prove that a proper coloring of \(G \) can be chosen from the lists.

11. Suppose that a \((4m - 1, 2m - 1, m - 1) \)-design exists. Prove that there is a Hadamard matrix of order \(4m \).