Justify your answers. Good luck.

Problem 1. Let \(p \) be a prime number.
- (10 points) Define a Sylow \(p \)-subgroup of a finite group.
- (10 points) Let \(\mathbb{F}_p \) be a finite field with \(p \) elements, \(GL(2, \mathbb{F}_p) \) the group of invertible 2x2 matrices with \(\mathbb{F}_p \)-coefficients, and \(U(2, \mathbb{F}_p) = \{ \begin{pmatrix} 1 & q \\ 0 & 1 \end{pmatrix} \mid a \in \mathbb{F}_p \} \) the subgroup of upper-triangular unipotent matrices. Show that \(U(2, \mathbb{F}_p) \) is a Sylow \(p \)-subgroup of \(GL(2, \mathbb{F}_p) \).
- (10 points) Find the number of Sylow \(p \)-subgroups of \(GL(2, \mathbb{F}_p) \).

Problem 2. (10 points) Find (a) all homomorphisms of additive groups \(\mathbb{Z} \to \mathbb{Q} \) and (b) all homomorphisms of rings \(\mathbb{Z} \to \mathbb{Q} \).

[In this problem ring homomorphisms are not required to map 1 to 1]

Problem 3. Let \(R \) be an integral domain.
- (10 points) Define when an element \(x \in R \) is irreducible and when it is prime. Prove or give a counter-example: irreducible \(\Rightarrow \) prime, prime \(\Rightarrow \) irreducible.
- (10 points) Define when \(R \) is Euclidean and show that if \(R \) is Euclidean then it is a principal ideal domain.
- (10 points) Show that if \(R \) is a principal ideal domain and \(x \in R \) then \(x \) is prime \(\iff \) \(x \) is irreducible.

Problem 4. Let \(p \) be a prime number and consider a polynomial \(f_p(x) = x^4 + p^2 \in \mathbb{Q}[x] \)
- (10 points) Find the splitting field \(E \) of \(f_p \).
- (10 points) Find the Galois group of \(E \) over \(\mathbb{Q} \).
- (10 points) Is \(f_p \) irreducible in \(\mathbb{Q}[x] \)?

[The answers might depend on \(p \)]