1. Let \mathbb{R}^2 have coordinates (u, v) and let \mathbb{R}^3 have coordinates (x, y, z). In \mathbb{R}^2, let $U = (0, \pi) \times (0, 2\pi)$, and let $f : \mathbb{R}^2 \to \mathbb{R}^3$ be given by

$$f(u, v) = (\sin(u) \cos(v), \sin(u) \sin(v), \cos(u))$$

(a) Compute $f^*(x)$, $f^*(y)$, $f^*(z)$, $f^*(dx)$, $f^*(dy)$ and $f^*(dz)$.
(b) Consider the differential form $\omega = xdy \wedge dz + ydz \wedge dx + zdx \wedge dy$ on \mathbb{R}^3. Compute

$$\int_U f^*(\omega).$$

2. Let M and N be compact oriented n-manifolds-without-boundary and ω an n-form on N such that

$$\int_N \omega = 1.$$

Recall that the degree of a smooth map $f : M \to N$ can be defined as

$$\deg(f) = \int_M f^*(\omega).$$

Prove that $\deg(f)$ depend only on the homotopy class of f; that is, if f is homotopic to g, then $\deg(f) = \deg(g)$.

3. Let M be a smooth noncompact manifold-without-boundary and $K \subset M$ any compact subset. Prove that there exists a compact manifold with boundary N such that $K \subset N \subset M$. (Hint: you may assume the existence of a proper smooth function $f : M \to \mathbb{R}$.)