Comprehensive Exam: Differentiable Manifolds
August 2011

Problem 1 (15 points)
Show that the subset
\[\{(x, y) \in \mathbb{R}^2 \mid x^3 + xy + y^3 = 1 \} \]
is a submanifold of \(\mathbb{R}^2 \).

Problem 2 (35 points)
(a) Let \(x, y, z \) be the standard coordinate functions on \(\mathbb{R}^3 \). Consider the vector fields
\[
X = x \frac{\partial}{\partial x} + z \frac{\partial}{\partial y} + 2 \frac{\partial}{\partial z},
\]
\[
Y = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} + z \frac{\partial}{\partial z}
\]
and the 2-form
\[
\omega = (z - y)dx \wedge dy + (x + y + z)dy \wedge dz
\]
on \(\mathbb{R}^3 \). Compute the following quantities.
(i) The time-\(t \) flow, \(\phi_t \), of the vector field \(X \).
(ii) The push forward map \((\phi_1)_* : T_{(x,y,z)} \mathbb{R}^3 \to T_{\phi_1(x,y,z)} \mathbb{R}^3 \).
(iii) The Lie bracket \([X, Y] \).
(iv) The exterior derivative \(d\omega \).
(b) (i) For a smooth vector field \(Y \) and a smooth \(k \)-form \(\omega \) on a smooth manifold \(M \) define the Lie derivative \(\mathcal{L}_Y \omega \)
(ii) For \(Y \) and \(\omega \) as in part (a), compute \(\mathcal{L}_Y \omega \).

Problem 3 (30 points)
(i) Let \(W \) be a compact oriented manifold of dimension \(k + 1 \) with nonempty boundary \(\partial W = M \). Let \(F : M \to N \) be a smooth map and \(\omega \) a smooth \(k \)-form on \(N \) such that \(d\omega = 0 \). Prove that if \(F \) can be extended to a smooth map \(\tilde{F} : W \to N \), then
\[
\int_M F^* \omega = 0.
\]
(ii) For $S^1 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$ consider the smooth map $F : S^1 \to S^1$ defined by

$$F(x, y) = (-x, -y).$$

Prove that F cannot be extended to a smooth map $\widetilde{F} : \mathbb{B}^2 \to S^1$ where $\mathbb{B}^2 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 1\}$.

Hint. Consider part (i) and the one-form ω on S^1 defined as the restriction of

$$\left(\frac{-y}{x^2 + y^2}\right) dx + \left(\frac{x}{x^2 + y^2}\right) dy.$$