Comprehensive Exam in Algebra (500)
August, 2012.

Each question is worth 25 points.

1. (a) Let \(H, K \) be subgroups of a group \(G \). Show that if \(H \trianglelefteq G \), then \(HK \) is also a subgroup of \(G \).

 (b) Given an example to show that \(HK \) can fail to be a subgroup if neither \(H \) or \(K \) are normal.

 (c) Prove that if \(H \trianglelefteq G \) of prime index \(p \), then for any subgroup \(K \leq G \) either (i) \(K \leq H \) or (ii) \(G = HK \) and \(|K : K \cap H| = p \).

2. (a) Let \(P \) be a \(p \)-Sylow subgroup of a finite group \(G \). Show that if \(N \trianglelefteq G \) is a normal subgroup of \(G \), then \(P \cap N \) is a \(p \)-Sylow subgroup of \(N \).

 (b) Give an example to show that (a) can fail if \(N \) is not normal.

 (c) Show that every group of order 460 = 4 · 5 · 23 is solvable.

3. Let \(R \) be an integral domain.

 (a) Given an element \(x \in R \) define what it means for \(x \) to be irreducible, and what it means for \(x \) to be prime. By proof or counterexample, determine whether irreducible implies prime, and whether prime implies irreducible.

 (b) Show that if \(R \) is a PID then \(x \in R \) is prime if and only if it is irreducible.

 (c) Let \(A \) denote the ring \(\mathbb{Z}(\sqrt{-5}) = \{ a + b\sqrt{-5} \mid a, b \in \mathbb{Z} \} \). Prove that \(A \) is not a principal ideal domain.

4. Let \(E = \mathbb{Q}(a) \) where \(a = \sqrt{1 + \sqrt{2}} \).

 (a) Find the irreducible polynomial of \(a \).

 (b) What is \((E : \mathbb{Q}) \).

 (c) Identify the Galois group of \(E/\mathbb{Q} \).

 (d) How many subfields of \(E \) are there?