LOGIC COMPREHENSIVE EXAM, AUGUST 2012

Each problem is worth 20 points for a total of 100 points.

Throughout, L is a (first-order) language, and for a set Σ of L-sentences, $\text{Mod}(\Sigma)$ is the class of models of Σ.

Problem 1. Let Σ_1, Σ_2 be sets of L-sentences such that no L-structure is a model of both Σ_1 and Σ_2. Show that there is an L-sentence σ such that $\text{Mod}(\Sigma_1) \subseteq \text{Mod}(\sigma)$ and $\text{Mod}(\Sigma_2) \subseteq \text{Mod}(\neg \sigma)$.

Problem 2. Suppose σ and τ are L-sentences and no non-logical symbol occurs in both σ and τ. Suppose also that every model of σ is infinite and every model of $\neg \tau$ is infinite. Finally, suppose that $\sigma \rightarrow \tau$ is true in all L-structures. Prove that either $\neg \sigma$ is true in all L-structures or τ is true in all L-structures.

Problem 3. Suppose that L has just a unary relation symbol P and a binary relation symbol \prec. Let T be the theory whose models are the structures $\mathcal{A} = (A, P^A, \prec^A)$, where (A, \prec^A) is a dense linear order without endpoints and P^A is a non-empty subset of A such that whenever $b \in P^A$ and $a \prec^A b$, then $a \in P^A$. Find all complete L-theories extending T by indicating for each such complete extension T' a sentence σ' such that $T \cup \{\sigma'\}$ axiomatizes T'.

Problem 4. Suppose the only non-logical symbol of L is a binary predicate R. Consider the L-structure

$$\mathcal{A} := (\mathbb{Z}, \{(a, b) \in \mathbb{Z}^2 : a^2 = b^2\}).$$

(a) For which $k \in \mathbb{Z}$ is the singleton (k) 0-definable in \mathcal{A}?

(b) For which infinite cardinals κ is $\text{Th}(\mathcal{A})$ κ-categorical? (To be done without using results in model theory beyond Math 570.)
Problem 5. Let L contain (at least) the constant symbol 0 and the unary function symbol S. Let Σ be a set of L-sentences.

(a) Define what it means for a function $f: \mathbb{N} \to \mathbb{N}$ to be representable (as a function) in Σ.

(b) Suppose that $f, g: \mathbb{N} \to \mathbb{N}$ are functions that are representable in Σ and $h = g \circ f$ is their composition. Show that h is representable in Σ.