Problem 1 (20 points) Let R be a ring (with identity, as always).

(a) Explain what is meant by saying that a short exact sequence splits. Given an example of a ring R and a non-split short exact sequence of R modules.

(b) Let k be a field. Show that every short exact sequence of vector spaces is split.

(c) With k still a field, let p, q, r be non-negative integers and suppose we have a short exact sequence

$$0 \to k^p \to k^q \to k^r \to 0.$$

What can you say about the relation between the integers p, q, r in this case? Explain.

Problem 2 (20 points) Let R be a ring, with identity.

(a) Let us define a projective R-module P as one that is a direct summand of a free module: $P \oplus M = F$ for some module M and a free module F. Show that any short exact sequence

$$0 \to A \to B \to P \to 0$$

splits if P is projective.

(b) Let $0 \to A \xrightarrow{f} B \xrightarrow{\pi} C \to 0$ be a short exact sequence of R-modules. Suppose that we are given homomorphisms $\alpha_1 : P_1 \to A$, $\alpha_2 : P_2 \to C$, where P_i are projective. Show that there is a projective module P and a homomorphism $\alpha : P \to B$ such that the following diagram commutes for some homomorphisms d_1, d

$$
\begin{array}{ccc}
0 & \to & P_1 \xrightarrow{d_1} P \xrightarrow{d} P_2 \to 0 \\
\downarrow{\alpha_1} & & \downarrow{\alpha} & \downarrow{\alpha_2} \\
0 & \to & A \xrightarrow{f} B \xrightarrow{\pi} C \to 0
\end{array}
$$

and such that the top row is also exact. Explain in detail what P is (and why is it projective!), and what the maps d_1, d, α are.
(c) Let \(M = \mathbb{Z}/3 \mathbb{Z} \) and consider \(M \) as a module over the rings \(R \) given below.
- If \(R = \mathbb{Z} \) is \(M \) free? Projective?
- If \(R = \mathbb{Z}/3 \mathbb{Z} \) is \(M \) free? Projective?
- If \(R = \mathbb{Z}/6 \mathbb{Z} \) is \(M \) free? Projective?

In each case explain how \(M \) is a module over the given ring \(R \).

Problem 3 (20 points) Let \(R, S, T \) be not necessarily commutative rings with identity.

(a) If \(R M_S \) and \(S N_T \) are bimodules as shown, describe in detail the module structure of \(M \otimes_S N \) and justify your answer.

(b) Given a bimodule \(R M_S \), prove that there is an isomorphism of left \(R \)-modules \(M \otimes_S S \simeq M \).

(c) Given bimodules \(L_R, R M_S, N_S \), show that there is an isomorphism of abelian groups

\[
\text{Hom}_S(L \otimes_R M, N) \simeq \text{Hom}_R(L, \text{Hom}_S(M, N)).
\]

Problem 4 (20 points) Let \(R \) be a ring with identity and let \(M \) be an \(R \)-module such that \(M = M_1 + M_2 + \cdots + M_k \) where the \(M_i \) are simple submodules of \(M \).

(a) Prove that \(M \) is the direct sum of certain of the \(M_i \).

(b) If \(N \) is a submodule of \(M \), prove that \(N \) is a direct summand of \(M \), i.e., \(M = N \oplus L \) for some submodule \(L \).

(c) Prove that every submodule and quotient module of \(M \) is a direct sum of simple submodules isomorphic with certain \(M_i \)'s.

Problem 5 (20 points) Let \(G \) be a finite group and \(\mathbb{C} \) the complex field.

(a) Explain in detail how the structure of the group algebra \(\mathbb{C} G \) determines the irreducible \(\mathbb{C} \)-representations of \(G \).

(b) Prove that \(|G| = n_1^2 + n_2^2 + \cdots + n_k^2 \) where the \(n_i \) are the degrees of the irreducible \(\mathbb{C} \)-representations of \(G \).

(c) Let \(G \) be the symmetric group of degree 3. Find the degrees of the irreducible \(\mathbb{C} \)-representations of \(G \) and describe the corresponding representations.