Math 542, Comprehensive Examination
January 18, 2012

Solve all eight problems. Each problem is worth 10 points.

Notation: \(\mathbb{D} = \{ z \in \mathbb{C} : |z| < 1 \} \), \(\mathbb{H} = \{ z \in \mathbb{C} : \text{Re} \, z > 0 \} \), \(\mathbb{T} = \{ z \in \mathbb{C} : |z| = 1 \} \).

1) Is there an analytic function \(f : \mathbb{H} \to \mathbb{C} \) such that
\[
\text{Re} \, f(z) = x \arctan \left(\frac{y}{x} \right) + \frac{y \log(x^2 + y^2)}{2} \quad \text{for all } z = x + iy \in \mathbb{H}.
\]
Justify your claim.

2) Evaluate the integral
\[
\int_{\gamma} \frac{e^{-z}}{z^2 - 2} \, dz,
\]
where \(\gamma \) is the imaginary axis with positive upward orientation.

3) Find a conformal map of \(\mathbb{H} \setminus \{ z = x + iy : x \geq 1, \ y = 0 \} \) onto \(\mathbb{H} \).

4) Let \((f_n)_{n \in \mathbb{N}} \) be a sequence of entire functions. Assume that this sequence converges to a polynomial \(f \) of degree \(d \geq 1 \) uniformly on compact subsets of \(\mathbb{C} \).
 (i) Prove that there exists \(N \in \mathbb{N} \) such that for all \(n \in \mathbb{N} \), \(n \geq N \), the function \(f_n \) has at least \(d \) zeroes, counting multiplicity.
 (ii) Is it true that there must exist \(N \in \mathbb{N} \) such that each \(f_n \), \(n \geq N \), has exactly \(d \) zeroes? Justify your claim.

5) Let \(f \) be an analytic function in \(\mathbb{D} \), and assume that
\[
\left| f\left(\frac{1}{n} \right) \right| \leq \frac{1}{2^n} \quad \text{for all } n \in \mathbb{N}, \ n \geq 2.
\]
Prove that \(f \) vanishes identically in \(\mathbb{D} \).

6) Let \(f \) be an analytic function in \(\mathbb{D} \) with \(|f(z)| \leq M \) for some \(M > 0 \) and all \(z \in \mathbb{D} \).
Prove that \(|f'(1/2)| \leq 4M/3 \). Is this bound sharp? Justify your claim.

7) Let \(G(z) \) be defined by the infinite product
\[
G(z) = \prod_{n=1}^{\infty} \left(1 + \frac{z}{n} \right) e^{-z/n}.
\]
 (i) Show that \(G(z) \) defines an entire function.
 (ii) Show that \(\pi z G(z) G(-z) = \sin(\pi z) \) for all \(z \in \mathbb{C} \).

8) Let \(h(e^{i\theta}) \) be a continuous function on the unit circle \(\mathbb{T} \). Show that
\[
\tilde{h}(re^{i\theta}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{1 - r^2}{1 + r^2 - 2r \cos(\theta - \varphi)} h(e^{i\varphi}) \, d\varphi
\]
defines a harmonic function in \(\mathbb{D} \) and that \(\lim_{z \to z_0} \tilde{h}(z) = h(z_0) \) for all \(z_0 \in \mathbb{T} \).