
1. Let \(f : M \to \mathbb{R} \) be a smooth function. What are the conditions on the differential of \(f \) that guarantee that \(N := f^{-1}(0) \) is an embedded submanifold? Are these conditions necessary?

Suppose \(N = f^{-1}(0) \) is a submanifold and \(X, Y \) are two vector fields on \(M \) that are tangent to \(N \). Prove that the Lie bracket \([X, Y]\) is tangent to \(N \) as well.

2. The set
 \[M = \{(x, y, z, w) \in \mathbb{R}^4 \mid x = 8 - 2y^2 - 2z^2 - 2w^2, x \geq 0\} \]
 is a 3-manifold with boundary. Pick an orientation of \(M \) and compute the integral
 \[\int_M d(xy) \wedge dz \wedge dw. \]

3. Let \(\nabla \) be a connection on a manifold \(M \). Prove that the torsion \(T \) of the connection defined by
 \[T(X, Y) = \nabla_X Y - \nabla_Y X - [X, Y], \]
 where \(X, Y \) are vector fields, is actually a tensor on \(M \). What do you need to check?

4. Let \(f : M \to N \) be a submersion and \(g : P \to N \) a smooth map \((M, N, P)\) are manifolds). Is the set
 \[\{(m, p) \in M \times P \mid f(m) = g(p)\} \]
a submanifold of \(M \times N \)? Explain.