MATH 530 - Comprehensive Examination - May 2006

Instructions: Do four of the following six problems. Select two problems from 1, 2, 3 and two problems from 4, 5, 6. Indicate clearly which problems you have selected. Each question is worth 25 points, Maximum score is 100 points.

Here is a theorem that you may wish to quote in your solutions:

Minkowski's bound: Let K be a finite extension of the rational numbers with degree n and let O_K be the set of algebraic integers in K and Δ the discriminant of O_K over the integers. Assume K has r embeddings into the real numbers and $2s$ embeddings into the complex numbers. Then every class of fractional ideals contains an ideal I in O_K that satisfies

$$|N_{K/Q}(I)| \leq \frac{n!}{n^n} \left(\frac{4}{\pi}\right)^s |\Delta|^{1/2}.$$

**** Select two problems from 1, 2, 3 ****

1) Let $K = \mathbb{Q}(\sqrt{61})$. Show that the ring of integers O_K of K is a principal ideal domain.

2) Let K be a number field with ring of integers O_K and group of units E_K.
 a) State Dirichlet’s Unit Theorem for E_K.
 b) Let $K = \mathbb{Q}(\sqrt[3]{2})$ and let L/\mathbb{Q} be the normal closure of K/\mathbb{Q}. Describe E_K and E_L as abstract abelian groups.
 c) Find subgroups of finite index in E_K and E_L with explicit generators.

3) Let $K = \mathbb{Q}(\sqrt{21}, \sqrt{33})$.
 a) For each of the primes $p = 2, 3$ give the decomposition parameters e, f, r for the decomposition of p in K/Q.
 b) For each of the primes $p = 2, 3$ give the decomposition field and the inertia field for K/Q.
4) Let K be a number field with ring of integers O_K. Given any ideal class c of K and any ideal I of O_K, show that there exists an ideal J of O_K in the class c that is relatively prime to I.

5) Let K be a number field with ring of integers $O_K = \mathbb{Z}[\alpha]$. Let f be the minimum polynomial for α over \mathbb{Q}. For a prime p in \mathbb{Z} let

$$\bar{f} = f_1 \cdot f_2 \cdots f_r \pmod{p}$$

be the factorization of f modulo p into irreducible factors. Denote by I_1 the ideal $(p, f_1(\alpha)) \subset \mathbb{Z}[\alpha]$, where $f_1 \in \mathbb{Z}[x]$ is a polynomial that reduces modulo p to f_1. Assume that $I_1 \neq \mathbb{Z}[\alpha]$.

Show that I_1 is a prime ideal of O_K dividing p.

6) Show that the quotient group $\mathbb{Q}_5^*/(\mathbb{Q}_5^*)^2$ is finite, where \mathbb{Q}_5 is the complete 5—adic field.