Solve any four of the five problems.

Problem 1
You may use the fact that the discriminant of a root of \(x^3 + ax + b \) is given by \(-4a^3 + 27b^2\).

a) Suppose that \(a^3 = a + 1 \). Let \(K = \mathbb{Q}(\alpha) \) and let \(\mathcal{O} \) be the ring of integers. Find an integral basis for \(\mathcal{O} \).

b) Factor \(5\mathcal{O} \) explicitly as a product of prime ideals.

c) Let \(\mathcal{P} \) be a prime ideal of \(\mathcal{O} \) over 2. Describe the field \(\mathcal{O}/\mathcal{P} \) (up to isomorphism).

d) Are any primes \(p \in \mathbb{Z} \) totally ramified in \(\mathcal{O} \)?

Problem 2
Let \(p \) be an odd prime and let \(\zeta \) be a primitive \(p \)th root of unity.

a) Describe the unit group of \(\mathbb{Q}(\zeta) \) as an abstract abelian group.

b) Describe the unit group of \(\mathbb{Q}(\zeta + \zeta^{-1}) \) as an abstract abelian group.

c) Assume Kummer's Lemma: If \(u \) is a unit of \(\mathbb{Q}(\zeta) \) then \(u/u = \zeta^r \) for some \(r \in \mathbb{Z} \) (where \(-r \) is complex conjugation).

Prove: any unit of \(\mathbb{Q}(\zeta) \) can be written in the form \(\zeta^s \epsilon^1 \), where \(s \in \mathbb{Z} \) and \(\epsilon^1 \) is a unit of \(\mathbb{Q}(\zeta + \zeta^{-1}) \).

Problem 3
Let \(f = x^2 + x + 1 \in R[x] \), where \(R = \mathbb{Z}/49\mathbb{Z} \).

a) State Hensel's lemma.

b) Prove that \(f \) factors as a product of two linear factors in \(R[x] \).

In the next three parts you will construct a nontrivial factorization of \(f \in R[x] \).

c) Find linear polynomials \(g_1, h_1 \in R[x] \) with \(f \equiv g_1 h_1 \pmod{7} \).

d) Find \(a_1, b_1 \in R[x] \) with \(a_1 g_1 + b_1 h_1 \equiv 1 \pmod{7} \).

e) Find \(u_1, v_1 \in R[x] \) such that, for \(g_2 = g_1 + 7u_1 \) and \(h_2 = h_1 + 7v_1 \), we have \(f \equiv g_2 h_2 \pmod{49} \).

Problem 4
Let \(K = \mathbb{Q}(\sqrt[3]{b}) \) be a cubic number field and let \(L/\mathbb{Q} \) be the normal closure of \(K/\mathbb{Q} \), so that \(\text{Gal}(L/\mathbb{Q}) = S_3 \). Let \(p \in \mathbb{Z} \) be a prime which is unramified in \(K \), and let \(Q \) be a prime of \(L \) over \(p \).

a) Show that \(p \) is unramified in \(L \).

b) Define the Frobenius automorphism \(\phi(Q|p) \in \text{Gal}(L/\mathbb{Q}) \).

c) Show that the cycle structure of the Frobenius \(\phi(Q|p) \in S_3 \) depends on \(p \) but not on \(Q \).

d) Describe the decomposition of \(p \) in \(K/\mathbb{Q} \) for each of the following cases: \(\phi(Q|p) = (1), \phi(Q|p) = (12), \phi(Q|p) = (123) \).
Problem 5
Suppose that K is a number field which is Galois over \mathbb{Q} and that \mathcal{P} is a prime ideal of the ring of integers \mathcal{O}. Define, for $m \geq 0$, the group

$$V_m := \{ \sigma \in \text{Gal}(K/\mathbb{Q}) : \sigma(\alpha) \equiv \alpha \pmod{\mathcal{P}^{m+1}} \text{ for all } \alpha \in \mathcal{O} \}.$$

a) Suppose that $V_0 = \{ \text{id} \}$. Let $p \in \mathbb{Z}$ be the prime under \mathcal{P}. What can you conclude about the decomposition of p in \mathcal{O}?

b) Prove that $\bigcap_{m=0}^{\infty} V_m = \{ \text{id} \}$ and that $V_m = \{ \text{id} \}$ for sufficiently large m.

c) Suppose that $\pi \in \mathcal{P}$. If $\sigma \in V_{m-1}$ and $\sigma(\pi) \equiv \pi \pmod{\mathcal{P}^{m+1}}$, prove that

$$\sigma(\alpha) \equiv \alpha \pmod{\mathcal{P}^{m+1}} \text{ for all } \alpha \in \pi \mathcal{O}$$