Solve all four problems in Part I and one problem in Part II. Indicate your choice. Credit will be given only for one problem in Part II. Each problem is worth 20 points.

\(m \) denotes the Lebesgue measure on \(\mathbb{R} \).

Part I

I. Let \(f \in L^1([0,1]) \). For \(t \geq 0 \), let \(F(t) = \int_0^1 x e^{-t/x} f(x) \, dm(x) \).

(i) (6 points) Prove that \(F(t) \) is finite for all \(t \geq 0 \).

(ii) (7 points) Prove that \(F : [0, \infty) \to \mathbb{R} \) is continuous.

(iii) (7 points) Is \(F \) differentiable? If so, calculate \(F'(t) \) for \(t > 0 \) and \(\lim_{h \to 0^+} \frac{F(h) - F(0)}{h} \).

II. Decide whether each of the following statements is true or false. Justify your answer with a short proof if the statement is true or a counterexample if it is false. (5 points each)

(a) Let \((f_n) \) be a sequence in \(L^p([0,1]) \) which converges in \(L^p \) to \(f \in L^p([0,1]) \). Then \((f_n) \) converges to \(f \) in measure. (A sequence \((g_n) \) is said to converge in measure to \(g \) if \(\lim_{n \to \infty} m(\{x : |g_n(x) - g(x)| \geq \epsilon\}) = 0 \) for every \(\epsilon > 0 \).)

(b) If \(f : [a, b] \to \mathbb{R} \) is absolutely continuous and one-to-one, then \(f^{-1} \) is absolutely continuous.

(c) If \(f : [0, 1] \to \mathbb{R} \) is a measurable function so that \(\int_E f \, dm = 0 \) for all measurable sets \(E \subset [0,1] \), then \(f = 0 \) almost everywhere.

(d) If \(f : [0,1] \to \mathbb{R} \) is continuous, then \(f \) is of bounded variation.

III. For \(n \in \mathbb{N} \), let \(h_n = \sum_{j=1}^n (-1)^j \chi_{[(j-1)/n,j/j/n]} \). Show that \(\lim_{n \to \infty} \int_{[0,1]} f h_n \, dm = 0 \) for every \(f \in L^1([0,1]) \). Here \(\chi_E \) denotes the characteristic function of the set \(E \).

IV. (i) (10 points) Let \(f : [0,1] \to \mathbb{R} \) be a continuous function which is absolutely continuous on \([\epsilon, 1]\) for every \(0 < \epsilon < 1 \), and of bounded variation on \([0,1]\). Prove that \(f \) is absolutely continuous on \([0,1]\).

(ii) (10 points) Let \(f : [0,1] \to \mathbb{R} \) satisfy \(|f(x) - f(y)| \leq |x^{1/3} - y^{1/3}| \) for all \(x, y \in [0,1] \). Must \(f \) be absolutely continuous? Justify your answer.
Part II

V. Let $f \in L^\infty([0, 1])$. Prove the following statements:

(i) (10 points) The function $p \mapsto \|f\|_p$ is nondecreasing for $1 \leq p < \infty$.
(ii) (10 points) $\lim_{p \to \infty} \|f\|_p = \|f\|_\infty$.

VI. Let \mathcal{H} be the Hilbert space $L^2([0, 1])$.

(i) (5 points) Prove the Parallelogram Identity:

$$\|f + g\|^2 + \|f - g\|^2 = 2(\|f\|^2 + \|g\|^2) \quad \forall f, g \in \mathcal{H}.$$

(ii) (15 points) Let $K \subset \mathcal{H}$ be a nonempty, closed, convex set, and let $f \in \mathcal{H}$. Prove that there exists a unique element $h \in K$ so that $\|f - h\| = \inf_{g \in K} \|f - g\|$.