Math 531 Comprehensive Exam
May 2009

Problem 1
(a) Let \(f(n) = \sum_{p^n | n} \frac{1}{p} \). Prove an asymptotic for \(\sum_{n \leq x} f(n) \).

(b) Let \(g \) be the multiplicative function satisfying \(g(p^a) = p^{a-1}(p + 1) \) for prime \(p \) and \(a \geq 1 \). Prove a formula for \(\sum_{n \leq x} g(n) \) with error \(O(x \log x) \).

Express the constant in terms of values of the Riemann zeta function.

Problem 2
For this problem, any form of the prime number theorem may be used.
(a) When \(x \) is very large, determine which function is larger,

\[
A(x) = x \sum_{p \leq x} \frac{1}{p}, \quad \text{or} \quad B(x) = \frac{3}{5} \sum_{x < p \leq 2x} p.
\]

(b) Determine asymptotically how many positive integers \(\leq x \) are odd, squarefree and have an even number of prime factors.

Problem 3
(i) Suppose \(t_n \) are complex numbers and \(T(x) = \sum_{n \leq x} t_n \) satisfies \(T(x) = O(x^a) \), where \(a \geq 0 \). Prove that the Dirichlet series

\[
F(s) = \sum_{n=1}^{\infty} \frac{t_n}{n^s}
\]

represents an analytic function in the half-plane \(\text{Re} \, s > a \).

(ii) Let \(t_n = \Lambda(n) - 1 \). Give a plausible estimate for \(T(x) \) that implies the Riemann Hypothesis, and prove the implication. By plausible, we mean an estimate which is not known to be false, such as \(T(x) = O(1) \). In other words, use the weakest estimate for \(T(x) \) that still implies RH.

Problem 4
Let \(\chi \) be a nonprincipal Dirichlet character modulo \(q \) and let

\[
L(s, \chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s}, \quad \text{(Re} \, s > 1)\text{.}
\]
(i) Explain why $L(s, \chi)$ has an analytic continuation to the half-plane $\text{Re } s > 0$.

(ii) Let

$$H(s) = \frac{\zeta(s)}{\phi(q)} \sum_{\chi \mod q} L(s, \chi) = \sum_{n=1}^{\infty} \frac{h(n)}{n^s}.$$

Find the smallest number n (as a function of q) for which $h(n) \neq 1$.