Math 540 Exam
May, 2010

Calculators, books and notes are not allowed!

1. Show that for $p > 1$,

$$\lim_{n \to \infty} \int_1^n \frac{(1 - \frac{t}{n})^n}{tp} dm(t) = \int_1^\infty \frac{e^{-t}}{tp} dm(t).$$

Here m is the Lebesgue measure on \mathbb{R}.

2. Let

$$f(x) = \begin{cases} x \sin(1/x) & \text{for } 0 < x \leq \infty \\ 0 & \text{for } x = 0 \end{cases}$$

(a) Is f is uniformly continuous on $[0, \infty)$? Prove your answer!
(b) Is f of bounded variation on $[0, \infty)$? Prove your answer!

3. Let $1 \leq p < \infty$ and $f \in L^p(\mathbb{R})$. Prove that

$$\lim_{\delta \to 0} \int |f(x + \delta) - f(x)|^p dx = 0.$$

(Hint: Use the fact that C_0^∞ is dense in L^p. Here the space C_0^∞ is the set consisting of all continuous functions with compact support.)

4. (a) State Egoroff's theorem.
(b) State the Dominated Convergence Theorem.
(c) Prove the Dominated Convergence Theorem.

5. Let m be Lebesgue measure on \mathbb{R}. A sequence $\{f_n\}$ of measurable functions on \mathbb{R} is said to converge in measure to the measurable function f if, given $\varepsilon > 0$, there exists an N such that

$$m(\{x \in \mathbb{R} : |f_n(x) - f(x)| > \varepsilon\}) < \varepsilon$$

for all $n \geq N$. Prove that
a) If $f_n \in L^p(\mathbb{R})$ and $\|f_n - f\|_p \to 0$ for some $1 \leq p \leq \infty$, then $f_n \to f$ in measure.
b) If $f_n \to f$ in measure, then $\{f_n\}$ has a subsequence which converges to f a.e.

6. Let \mathbb{Q} be the set of all rational numbers. A coset of \mathbb{Q} in additive group \mathbb{R} is a set $x + \mathbb{Q} = \{y \in \mathbb{R} : y = x + r \text{ for some } r \in \mathbb{Q}\}$. Let E be a set that contains exactly one point from each coset of \mathbb{Q} in \mathbb{R}. Prove that
(a) $(r_1 + E) \cap (r_2 + E) = \emptyset$ if $r_1, r_2 \in \mathbb{Q}$ and $r_1 \neq r_2$
(b) $\mathbb{R} = \cup_{r \in \mathbb{Q}} (r + E)$.
(c) Prove that if $F \subset \mathbb{R}$ is a set such that every subset of F is Lebesgue measurable, then Lebesgue measure of F is 0.