1. Prove by definition that if μ_1, \ldots, μ_n are measures on (X, \mathcal{A}), $\alpha_1, \ldots, \alpha_n \in [0, \infty)$, then
 \[\sum_{j=1}^{n} \alpha_j \mu_j \text{ is a measure on } (X, \mathcal{A}). \]

2. Compute \(\lim_{k \to \infty} \int_0^k x^n (1 - k^{-1}x)^k \, dx \). Here \(n \in \mathbb{N} \).

3. Let \(\mu^* \) be an outer measure on \(X \). \(\{A_j\} \) be a sequence of disjoint \(\mu^* \)-measurable sets. Prove that \(\mu^*(E \cap \bigcup_j A_j) = \sum_j \mu^*(E \cap A_j) \).

4. Suppose that \(\{f_n\} \) is a sequence of positive measurable functions on \(\mathcal{R} \), \(\lim_{n \to \infty} f_n(x) = f(x) \) at every \(x \in \mathbb{R} \), and \(\int_{E} f = \lim_{n \to \infty} \int_{E} f_n < \infty \). Prove that \(\int_{E} f = \lim_{n \to \infty} \int_{E} f_n \) for all measurable sets \(E \).

5. Let \(E \) be a Lebesgue measurable set in \(\mathbb{R} \) and \(m(E) > 0 \). Prove that for any \(1 > \varepsilon > 0 \), there is an open interval \(I \) such that \(m(E \cap I) > \varepsilon m(I) \).

6. Let \(f \in L^p(\mathbb{R}) \) with \(1 \leq p < \infty \). Prove that
 \[\lim_{\lambda \to 0} \lambda^p m(\{x \in \mathbb{R} : |f(x)| > \lambda\}) = \lim_{\lambda \to \infty} \lambda^p m(\{x \in \mathbb{R} : |f(x)| > \lambda\}) = 0 \]