Math 540 Comprehensive Examination
May 17, 2013

Solve five of the following six. Each problem is worth 20 points. The Lebesgue measure is denoted by \(m \).

1. Let \(f \in L^p(\mathbb{R}) \). Prove that for any \(\varepsilon > 0 \), there exists a measurable set \(E \) such that \(m(E) < \infty \) and \(\|f\|_p \leq \|f \chi_E\|_p + \varepsilon \).

2. Let \(\{f_n\} \) be a sequence of complex-valued measurable functions on a measure space \((X, \mathcal{A}, \mu)\). Determine whether the following statements are true. For the false statement, provide a counterexample. For the true one, prove it.
 a) \(\{f_n\} \) converges to \(f \) in \(L^1 \), then \(f_n \to f \) in measure.
 b) \(f_n \to f \) a.e., then \(f_n \to f \) in measure.
 c) \(f_n \to f \) a.e. and \(\mu(X) < \infty \), then \(f_n \to f \) in measure.

3. Let \(f \) be a measurable function on \((X, \mathcal{A}, \mu)\). Determine whether the following statements are true. For the false statement, provide a counterexample. For the true one, prove it.
 a) if \(f \in L^\infty \), then \(\|f\|_\infty = \lim_{p \to \infty} \|f\|_p \).
 b) if \(f \in L^p \) for all \(\infty \geq p \geq 1 \), then \(\|f\|_\infty = \lim_{p \to \infty} \|f\|_p \).

4. Let \(E \) be a Lebesgue measurable subset of \(\mathbb{R} \). Prove that
 \[\lim_{x \to 0} m(E \cap (E + x)) = m(E). \]
 Here \(E + x = \{y + x : y \in E\} \).

5. Assume that \(f : \mathbb{R} \to \mathbb{R} \) is nondecreasing,
 \[\int_{\mathbb{R}} f' = 1, \quad \lim_{x \to -\infty} f(x) = 0, \quad \lim_{x \to \infty} f(x) = 1. \]
 Prove that \(f \) is AC on any interval \([a, b]\).

6. Let \(f_n \) be a sequence of Lebesgue measurable functions on the interval \([0, 1]\). Assume that \(f_n \) converges to a function \(f \) \(m \) almost everywhere, and that
 \[\int_{[0,1]} |f_n|^2 \, dm \leq 1 \]
 for each \(n \). Prove that \(f_n \) converges to \(f \) in \(L^1 \).
 Hint: Use Egoroff’s thm.