Math 540 Comprehensive Examination
May 20, 2014

Solve five of the following six. Each problem is worth 20 points. The Lebesgue measure is denoted by \(m \).

1. Let \(m^* \) be defined by, for any \(E \subset \mathbb{R} \),
 \[
 m^*(E) = \sup\{m(K) : K \subset E \text{ and } K \text{ is closed}\}.
 \]
 Here \(m \) is Lebesgue measure. Show that there exists a Lebesgue measurable set \(F \) such that \(m(F) = m^*(E) \).

2. Let \((X, \mathcal{A}, \mu)\) be a measure space. For each statement give a counterexample or a proof/explanation.
 a) \(f_j \to f \) a.e. and \(\sup_j \|f_j\|_p \leq 1 \) for some \(p > 1 \), then \(f_j \) converges to \(f \) in \(L^1 \).
 b) \(f_j \to f \) a.e., \(\sup_j \|f_j\|_p \leq 1 \) for some \(p > 1 \) and \(\mu(X) < \infty \), then \(f_j \) converges to \(f \) in \(L^1 \).

3. Let \(\mu \) be a measure on \(X \), \(0 < p < \infty \), \(f \in L^p \). Suppose that \((f_j) \) is a sequence of \(L^p \) functions such that \(f_j \to f \) a.e. and \(\lim_{j \to \infty} \|f_j\|_p = \|f\|_p \). Prove that \(f_j \) converges to \(f \) in \(L^p \).

4. Prove the following particular case of the change of variable theorem for the Lebesgue integral:
 If \(f \in L^1(\mathbb{R}, m) \), then for any \(a > 0 \) and for any \(b \in \mathbb{R} \),
 \[
 \int_{\mathbb{R}} f(ax + b)dm(x) = \frac{1}{a} \int_{\mathbb{R}} f(x)dm(x).
 \]

5. Let \(g \in L^1(\mathbb{R}, m) \) be nonnegative. Fix \(p \in [1, \infty) \). For \(f \in L^p(\mathbb{R}, m) \), let \(T(f) = f * g \) (convolution of \(f \) and \(g \)). Prove that
 \[
 \|T\|_{L^p \to L^p} = \|g\|_{L^1}.
 \]
 Here
 \[
 \|T\|_{L^p \to L^p} := \sup_{f : \|f\|_{L^p} = 1} \|T(f)\|_{L^p}.
 \]

6. Let \(E \subset \mathbb{R} \) be Lebesgue measurable. Define
 \[
 f(x) = \text{dist}(x, E) = \inf\{|x - e| : e \in E\}.
 \]
 Prove that for \(m \) a.e. \(x \in E \), \(\lim_{r \to 0^+} \frac{f(x+r)}{r} = 0 \).