A vanishing theorem for oriented intersection multiplicities, by Jean Fasel and Vasudevan Srinivas

Let A be a regular local ring containing 1/2, which is either equicharacteristic, or is smooth over a d.v.r. of mixed characteristic. We prove that the product maps on derived Grothendieck-Witt groups of A satisfy the following property: given two elements with supports which do not intersect properly, their product vanishes. This gives an analogue for ``oriented intersection multiplicites'' of Serre's vanishing result for intersection multiplicities. It also suggests a Vanishing Conjecture for arbitrary regular local rings containing 1/2, which is analogous to Serre's (which was proved independently by Roberts, and Gillet and Soul).

Jean Fasel <jean.fasel@math.ethz.ch>
Vasudevan Srinivas <srinivas@math.tifr.res.in>