1. \[L(z_1) = \frac{z_1(dw_3 - \beta w_1) + (\beta w_1 z_3 - d z_1 w_3)}{z_1(\lambda - \beta) + (\beta z_3 - d z_1)} = \frac{-\beta z_1 w_1 + \beta w_1 z_3}{-\beta z_1 + \beta z_3} = \frac{z_1 w_1}{z_1 + z_3} \]

\[L(z_2) = \frac{z_2(dw_3 - \beta w_1) + (\beta w_1 z_3 - d z_1 w_3)}{z_2(\lambda - \beta) + (\beta z_3 - d z_1)} = \frac{\lambda w_3(z_3 - z_1) + \beta w_1 z_3}{\lambda z_3 - \lambda z_1 + (\beta z_3 - d z_1)} \]

\[= \frac{\lambda w_3 (z_3 - z_2) + \beta w_1 (z_3 - z_2)}{\lambda z_3 - \lambda z_2 + (\beta z_3 - d z_1)} = \frac{w_3 - \beta w_1}{z_3 - z_1} \]

\[= \frac{\lambda w_3 - \lambda w_1}{\lambda z_3 - \lambda z_1} = \frac{\lambda w_3 - \lambda w_1}{\lambda z_3 - \lambda z_1} \]

\[L(z_3) = \frac{z_3(dw_3 - \beta w_1) + (\beta w_1 z_3 - d z_1 w_3)}{z_3(\lambda - \beta) + (\beta z_3 - d z_1)} = \frac{\lambda w_3(z_3 - z_1)}{\lambda z_3 - \lambda z_1 + (\beta z_3 - d z_1)} \]

2. \[S(z_1) = \frac{z_1 - z_1}{z_2 - z_1} = 0, \quad S(z_2) = \frac{z_2 - z_1}{z_2 - z_1} = 1, \quad S(z) = \frac{(z_2 - z_1)}{z_2 - z_1} = \]

4. In all cases, use the cross ratio \[
\frac{z - z_1}{z - z_2} = \frac{z_3 - z_2}{z_3 - z_1} = \frac{w - w_1}{w - w_2} = \frac{w_3 - w_2}{w_3 - w_1} \]

a. \[\frac{z - 1}{z - 1} = \frac{1 - 1}{w - 1} \Rightarrow \frac{z - 1}{w - 1} = \frac{1 - 1}{w - 1} \]

\[\Rightarrow \frac{z - 1}{w - 1} \]

b. \[\frac{z - 1}{z - 1} = \frac{1 - 1}{z - 1} \Rightarrow \frac{z - 1}{z - 1} = \frac{1 - 1}{z - 1} \]

\[\Rightarrow \frac{z - 1}{z - 1} \]

c. \[\frac{z - 1}{z - 1} = \frac{w - 1}{w} \frac{1 + i}{1} \Rightarrow \frac{z - 1}{z - 1} = \frac{w - 1}{w} \frac{1 + i}{1} \]

\[\Rightarrow \frac{z - 1}{z - 1} = \frac{w - 1}{w} \frac{1 + i}{1} \]

d. \[\frac{z - 1}{z - 1} = \frac{w - 1}{w} \frac{1 + i}{1} \Rightarrow \frac{z - 1}{z - 1} = \frac{w - 1}{w} \frac{1 + i}{1} \]

\[\Rightarrow \frac{z - 1}{z - 1} = \frac{w - 1}{w} \frac{1 + i}{1} \]

\[\Rightarrow \frac{z - 1}{z - 1} = \frac{w - 1}{w} \frac{1 + i}{1} \]
\[T(z) = \frac{az}{bz + d} \quad \text{as} \quad 0 \to 0 \]

\[T(1) = \frac{a}{b + d} = 1 \quad \Rightarrow \quad a = b + d \quad \Rightarrow \quad T(z) = \frac{(b + d)z}{bz + d} \]

\[T(c^\prime) = \infty \Rightarrow bc^\prime + d = 0 \quad \text{or} \quad d = -bc^\prime. \quad \text{Thus}, \]

\[T(z) = \frac{(b - bc^\prime)z}{bz - bc^\prime} = \frac{(a - c^\prime)z}{z - c^\prime} \]

b. Because \((0, 0)\) lies on both the real and imaginary axes, \(T(0) = 0\) or 1.

Suppose \(T(0) = 0\). Then \(T(z) = \frac{az}{cz + d}\). Now \(\infty\) must map into a point on the given circle, and the point must be \(1\). Hence \(T(\infty) = 1\). Hence \(a = c\). WLOG we can then assume that \(T(z) = \frac{z}{z + b}\). Also \(T(x)\) is real. So \(b\) is real. Now \(T(0,1)\) must lie inside the circle by continuity. Since all of \([0,1]\) must be covered by \(T\), we must have \(T([0,1]) = [0,1]\). Thus \(T(x) \to 1\) as \(x \to 1^+\), and \(T(x) \to 1\) as \(x \to \infty\). This is impossible as \(T\) is one-to-one at \(z = 1\).

Hence, \(T(0) \neq 0\).

Thus, \(T(0) = 1\). Now \(T(\infty)\) is real and must lie on the given circle, so \(T(\infty) = 0\). Hence \(a = 0\) and \(T(z) = \frac{b}{cz + d}\). But \(T(0) = 1\). Hence, \(b = d\). WLOG we can assume that \(b = d = 1\). Thus, \(T(z) = \frac{z}{z + 1}\). Also, since \(T(x)\) is real, \(c\) must be real. Let us look at the image of an arbitrary point \(z = iy\) on the imaginary axis. Now

\[
\left| \frac{1}{cy + 1} - \frac{1}{2} \right| = \frac{1}{2} \quad \Rightarrow \quad \left| \frac{-cy + 1}{cy + 1} - \frac{1}{2} \right| = \frac{1}{2}
\]

or

\[
\left| \frac{1}{1 + cy^2} - \frac{1}{2} - \frac{cy}{1 + cy^2} \right| = \frac{1}{2}
\]
\[
\left(\frac{1}{1+c^2 y^2} - \frac{1}{2} \right)^2 + \frac{c^2 y^2}{(1+c^2 y^2)^2} = \frac{1}{4}
\]
\[
\frac{4}{(1+c^2 y^2)^2} - \frac{4}{1+c^2 y^2} + \frac{1}{4} + \frac{c^2 y^2}{(1+c^2 y^2)^2} = \frac{1}{4}
\]
\[
\frac{4 - (1+c^2 y^2) + c^2 y^2}{(1+c^2 y^2)^2} = 0 = 0
\]

Thus, for all \(C \neq 0 \) real, \(T(z) = \frac{1}{cz+i} \) maps the imaginary axis onto \(|W - \frac{1}{2}| = \frac{1}{2} \).

c. Since \(\Phi \) lies on both the real and imaginary axes, \(T(0) = \frac{1}{2} \) or \(T(0) = 2 \). Let \(T(z) = \frac{az+b}{cz+d} \).

Suppose \(T(0) = \frac{1}{2} \). Then \(b/d = \frac{1}{2} \) or \(d = 2b \). Suppose \(T(\infty) = 0 \). Then \(T(z) = \frac{az}{cz} \), because \(b = 0 \), and then we must also have \(d = 0 \), since \(d = 2b \). But \(T(z) \) cannot be a constant. Thus, \(T(\infty) \neq 0 \). Hence, \(T(\infty) = 2 \). But then, in both cases, \(T(z) = [2, \infty) \) or \([\frac{1}{2}, 2] \), we will have \(T \) being not one-to-one. Thus, \(T(0) = \frac{1}{2} \) is not possible.

Suppose \(T(0) = 2 \). Hence \(b/d = 2 \) or \(b = 2d \). As above, if \(T(\infty) = 0 \), we find that \(T(z) \) is a constant, which is impossible. Hence, \(T(\infty) = \frac{1}{2} \). Hence \(a/c = 1/2 \), or \(c = 2a \). Hence, so far, we have \(T(z) = \frac{az + 2d}{2az + d} \). Suppose \(a \) is not real. Then if we let \(z \to \infty \), the imaginary part on the denominator is roughly twice as large as the imaginary part of the numerator.

Write \(T(z) = \frac{z + 2d/a}{2az + d} = \frac{z + 2d}{2az + d} \). Suppose that \(d \) is not real. Then let \(z = x \). We know, that \(T(x) = C \), say, is real. Thus, \(x + 2d = (2x + d)c \) or \(x(1-2c) = d(c-2) \). But \(x(1-2c) \) and \((c-2) \) are real. Thus, \(x \) must be real. Let us examine the image of \(z = iy \) on the imaginary axis.
\[
\frac{4x^4 + 8x^2y^2 + 4y^4}{(x^2 + 4y^2)^2} - \frac{5(x^2 + y^2)}{x^2 + 4y^2} + \frac{25}{16} + \frac{9d^2y^2}{(x^2 + 4y^2)^2} = \frac{9}{16}
\]

\[
4x^4 + 8x^2y^2 + 4y^4 - 5(x^2 + y^2)(x^2 + 4y^2) + 9d^2y^2 = -1
\]

\[
4x^4 + 17x^2y^2 + 4y^4 - 5x^4 - 25d^2y^2 - 20y^4 = -1
\]

\[
-\frac{4x^4 - 8x^2y^2 - 16y^4}{(x^2 + 4y^2)^2} = -\frac{(x^2 + 4y^2)^2}{(x^2 + 4y^2)^2} = -1
\]

Thus, \(T(z) = \frac{z + 2d}{2z + d} \) has all the desired properties.

d. Let \(T(z) = \frac{az+b}{cz+d} \), since \((0,0)\) is on both the real axis and \(y = x \), \(T(0) = \pm 1 \).

Suppose \(T(0) = +1 \). Then \(b = d \), and

\[
T(z) = \frac{az+b}{cz+b}
\]

Now \(T([-1, \infty)) = [-1, 1] \).

In particular, \(T(\infty) = -1 \). Thus, \(a/c = -1 \), \(ac = -a \).

Hence, \(T(z) = \frac{az+b}{-az+b} \). When we substitute this value for \(w \) in the locus \(|w + i| = \sqrt{2} \) we find that the equality is not satisfied. Suppose that \(T(0) = -1 \), then \(b = -d \) and

\[
T(z) = \frac{az+b}{cz+b}
\]

Now \(T([-1, \infty)) = [-1, 1] \) and so...
Thus, \(a = c \), hence \(T(z) = \frac{az - b}{az + b} \). We check to see if \(|w + i| = \sqrt{a} \) is satisfied on the line \(y = x \). Thus, \(z = x + ix = x(a + i) \). Now
\[
\frac{|ax(1+i) - b + i|^2}{|ax(1+i) + b|^2} = \left| \frac{ax - b + axi}{ax + b + axi} + i \right|^2
\]
\[
= \left| \frac{(ax-b+axi)(ax+b-axi)}{(ax+b)^2 + a^2x^2} + i \right|^2
\]
\[
= \left| \frac{a^2x^2 - b^2 + a^2x^2 + 2abxi + i}{c} \right|^2
\]
\[
= \left| \frac{2a^2x^2 - b^2 + i(2abx + 2a^2x^2 + 2abx + b^2)}{c} \right|^2
\]
\[
= \left| \frac{2a^2x^2 - b^2 + i(2a^2x^2 + 4abx + b^2)}{c} \right|^2
\]
\[
= \frac{(2a^2x^2 - b^2)^2 + (2a^2x^2 + 4abx + b^2)^2}{c^2}
\]
\[
= \frac{4a^4x^4 - 4a^2b^2x^2 + b^4 + 4a^4x^4 + 16a^2b^2x^2 + b^4 + 16a^3b x^3 + 8ab^3 + 16b^2}{c^2}
\]
\[
= \frac{8a^4x^4 + 16a^2b^2x^2 + 2b^4 + 16a^3b x^3 + 8ab^3 x}{4a^4x^4 + 8a^2b^2x^2 + b^4 + 8a^3b x^3 + 4ab^3 x}
\]
\[
= 2
\]
\[
|w + i| = \sqrt{a}
\]
Hence, \(T(z) = \frac{az - b}{az + b} \) for any real \(a, b \neq 0 \), satisfies the mapping properties.
14. \[T(1) = \frac{a+b}{c+d} = 1 \Rightarrow a+b = c+d \]
\[T(-1) = \frac{-a+b}{-c+d} = 1 \Rightarrow -a+b = c-d \]

Add: \(2b = 2c\) or \(b = c\). Subtract: \(2a = 2d\) or \(a = d\)
\[T(0) = \frac{a+0}{b+0} = \frac{a}{b} = \frac{a}{a} = 1 \]
\[T(\delta) = \frac{a+\delta}{b+\delta} = \frac{a+b+\delta}{b+\delta} = 1 \]
\[T(\delta) = 1 \]

Note \(T(0) = b/a, \) and if \(a = 0, \) then \(T(\delta) = 1/2.\)

12. \[S^{-1} T 0 S(\Delta) = S^{-1} (T(p)) = S^{-1} (p) = 1 \]
\[S^{-1} T 0 S(-\Delta) = S^{-1} T(q) = S^{-1} (q) = -1 \]

13. By Prob. 11, \(U(\Delta) = \frac{\Delta + \delta}{\delta \Delta + \delta}, \) \(U(\Delta) = \frac{\Delta - \delta^2}{(\delta \Delta + \delta)^2} \)

So \(U(\Delta) = \frac{\Delta - \delta^2}{(\delta \Delta + \delta)^2} = \frac{\Delta}{\delta + \delta} \)
\(U(-\Delta) = \frac{\Delta - \delta^2}{(-\delta \Delta + \delta)^2} = \frac{\Delta + \delta}{\delta - \delta} = \frac{\Delta}{U(\Delta)}\)

10a. We continue the discussion in the hint. Suppose \(U \in EC(1), \)
Then \(T(2,2,1)\) would map, by continuity, at least 1 point on \(C_2.\) But \(T\) is one-to-one and \(C_1\) is mapped onto \(C_2.\) Thus, at least 1 pt. on \(C_2\) is the image of 2 points, contradicting the fact that \(T\) is one-to-one.

b. We just need to check if \(z = -d/c \) lies on \(I(C_1)\) or \(EC(1), \) \(\delta d/c \in I(C_1), \) then the interior of \(C_1\) is mapped to the exterior of \(C_2. \) \(\delta d/c \in E(C_1), \) then \(T\) maps \(I(C_1)\) to \(I(C_2).\)

8a. From \#7c,
\[T(x+iy) = \frac{x+iy+2x}{2x+2iy} = \frac{5(x+2y)(x+2y) - 2y^2}{(2x+2)^2 + 4y^2} \]

Now,
\[\frac{5(x+2y)(x+2y) - 2y^2}{(2x+2)^2 + 4y^2} \]
\[= 2x^2 + 5x^2 + 2x^2 + 2y^2 - 3iy^2 \]
\(\text{If } x > 0, \) the 1st quadrant maps into the fourth quadrant.