Taylor's Theorem

Calc II: Taylor's Theorem

\[f: \mathbb{R} \to \mathbb{R} \text{ is } C^\infty. \text{ For any } a \in \mathbb{R}, \]

\[f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \cdots + \frac{f^{(k)}(a)}{k!}(x-a)^k + R_k(a,x), \]

where \(R_k(a,x) = \frac{f^{(k+1)}(z)}{(k+1)!}(x-a)^{k+1} \text{ for some } z \in [a,x]. \)

Recall: \(T_k(x) \) has same derivatives as \(f(x) \) at \(x=a \) up to order \(k \).

Disc: Taylor polynomials for \(n \)-variable \(f(x) \).

If \(f: \mathbb{R}^n \to \mathbb{R} \text{ is } C^1 \), we already know \(T_1(x) \).

\[T_1(x) = f(a) + \nabla f(a) \cdot (x-a) \]

the tangent hyperplane to surface \(z = f(x) \) at \((a,f(a)) \) or \(L_{\nabla f(a)}(x) \).

Ex: \(f(x,y) = e^{-x^2-y^2} \)

a) 1st order approx about \((0,0) \):

\[f(0,0) = e^0 = 1 \]

\[f_x(0,0) = -2xe^{-x^2-y^2} \]

\[f_y(0,0) = -2ye^{-x^2-y^2} \]

\[f_{xx}(0,0) = -2xe^{-x^2-y^2} \quad \text{and} \quad f_{yy}(0,0) = -2ye^{-x^2-y^2} \]

\[f_{xy}(0,0) = -2e^{-x^2-y^2} \]

\[T_1(x,y) = f(0,0) + f_x(0,0)x + f_y(0,0)y = e^{-x^2-y^2} \]

\[\nabla f(0,0) = (-2x, -2y) \]

\[L_{\nabla f(0,0)}(x,y) = -2x e^{-x^2-y^2} x - 2y e^{-x^2-y^2} y \]
\[T_{1}(x,y) = L_{1,0,0}(x,y) \]
\[= f_{1,0,0} + f_{x,0,0} (x-0) + f_{y,0,0} (y-0) \]
\[= 1 + 0 + 0 \]
\[= 1. \]

b) What about a 2nd-order approx?

Idea: require all 2nd-order partials to match.

Recall \(f_{xx}(x,y) = -de^{-x^2+y^2} + 4x^2e^{-x^2+y^2} \)
\(f_{xy}(x,y) = f_{yx}(x,y) = 4xy e^{-x^2+y^2} \)
\(f_{yy}(x,y) = -de^{-x^2+y^2} + 4y^2 e^{-x^2+y^2} \)

At \((0,0)\), \(f_{xx}(0,0) = -d \)
\(f_{xy}(0,0) = f_{yx}(0,0) = 0 \)
\(f_{yy}(0,0) = -d. \)

What polynomial term needs to be associated with each 2nd-order partial?
\(f_{xx} : \) For \(f_x(x,y) \), need two derivatives in \(x \).

Candidate: \(f_{x,0,0}(x-0)(x-0) = f_{x,0,0} x^2 \)

Is this right?

\[
\frac{d^2}{dx^2} (f_{x,0,0} x^2) = 2 f_{x,0,0}
\]

As with Calc I, need to account for scalars due to power rule.

Again, use \(f_{x,0,0} (x-0)^2 \).

\(f_y : \) Same discussion.

Use \(f_{y,0,0} (y-0)^2 \).

\(f_{xy} / f_{yx} : \)

For \(f_{xy} \), candidate \(f_{xy}(0,0) (x-0)(y-0) \).

This seems good:

\[
\frac{\partial}{\partial x} \left(\frac{1}{2} (f_{xy}(0,0) x y) \right) = f_{xy}(0,0)
\]

but here is a problem.
If we do the same for \(f_{yx} \),

\[f_{yx}(0,0) = (y-o)(x-o) \text{. Then our candidate for } T_2 \text{ has the mixed terms} \]

\[f_{xy}(0,0)x + f_{yx}(0,0)xy = 2f_{xx}(0,0)xy \]

by Clairaut's Thm.

So, again we require the scalar \(\frac{1}{2} \).

All together,

\[
\frac{1}{\sigma^2} x^2 y^2 \approx T_2(x,y)
\]

\[
= f(0,0) + f_x(0,0)(x-o) + f_y(0,0)(y-o) + \frac{1}{d^3} f_{xx}(0,0)(x-o)^2 + \frac{1}{d^3} f_{yy}(0,0)(y-o)^2 + \frac{1}{d^2} f_{xy}(0,0)(x-o)(y-o) + \frac{1}{d^2} f_{yx}(0,0)(x-o)(y-o) + \frac{1}{d^3} f_{xy}(0,0)(x-o)(y-o)
\]

\[
= 1 + 0 + 0 + \frac{1}{d} (-d^2) + 0 + 0 + \frac{1}{d} (-d^2)
\]

\[
= 1 - x^2 - y^2 .
\]
Thm: 2^{nd}-order Taylor Thm

Let $f: \mathbb{R}^n \to \mathbb{R}$ be C^2 at $\vec{x} = \vec{a}$, then define

$$T_2(\vec{x}) = f(\vec{a}) + \nabla f(\vec{a}) \cdot (\vec{x} - \vec{a}) + \frac{1}{2} \sum_{i,j=1}^{n} f_{ij}(\vec{a}) (\vec{x} - \vec{a})^i (\vec{x} - \vec{a})^j$$

Then $f(\vec{x}) = T_2(\vec{x}) + R_2(\vec{x}, \vec{a})$ where $\frac{R_2(\vec{x}, \vec{a})}{||\vec{x} - \vec{a}||^2} \to 0$ as $\vec{x} \to \vec{a}$.

Ex: Compute the 2^{nd}-order Taylor formula for $f(x,y) = e^{x+y} \cos xy$ about $(0,0)$.

Soln: $f(0,0) = 1$

$\nabla f(x,y) = (e^x \cos y, -e^x \sin y)$

$\nabla f(0,0) = (1, 0)$

$f_{xx} = e^x \cos y$, $f_{xx}(0,0) = 1$

$f_{xy}(x,y) = -e^x \sin y$, $f_{xy}(0,0) = 0$

Since f is C^2, $f_{yx}(0,0) = 0$ also.

$f_{yx}(x,y) = -e^x \cos y$, $f_{yx}(0,0) = -1$
\[
T_j(x,y) = f(0,0) + Df(0,0) \cdot (x-0, y-0) \\
+ \frac{1}{2} \left[f_{xx}(0,0) (x-0)^2 + 2f_{xy}(0,0)(x-0)(y-0) + f_{yy}(0,0) (y-0)^2 \right] \\
= 1 + \left(\frac{1}{10} \cdot (x,y) \right) + \frac{1}{2} \left[\frac{1}{10} x^2 + \frac{1}{10} x y + (-1) y^2 \right] \\
= 1 + x + \frac{1}{2} \left[x^2 - y^2 \right].
\]
topic: optimization

Calc I:
Fermat's Thm: If \(f(a) \) is a local extremum, then \(f'(a) = 0 \) or \(f'(a) \) undefined.

- local max
- \(f' = 0 \)
- local min, \(f' \) not defined
- global max
- global min

Extreme Value Thm: If \(f \) is cont. on \([a,b]\), then it attains an abs. max and min on the interval.

Classified critical numbers by:
- 1st DT - used slope
 - works for both types of critical numbers.
- 2nd DT - used concavity
 - only works for \(f' = 0 \) type
 - fails sometimes.

Calc III:

Thm: The Max-Min Thm.
Let \(D \) be a closed and bounded region in \(\mathbb{R}^n \) and let \(f \) be a continuous, scalar field on \(D \). Then \(f \) attains a max and min value at some point \(\vec{a} \) and \(\vec{b} \) in \(D \).
Bak: "closed and bounded"

- closed - region contains all its boundary points

- bounded - \(\| \bar{x} \| < R \) for all \(\bar{x} \in D \)
 i.e. all of D sits inside a sphere of radius R

Our tool: to use the Max-Min Thm

1) look for local extrema in interior of D

We need a way to find and classify critical points.
the 2nd D.T.

2) look for max + min values on the boundary

1st way: parameterize boundary of D and
use a four dimensional Max-Min Thm.

2nd way: method of Lagrange multipliers.

Topic: classifying critical points of the type \(DF(\bar{a}) = 0 \).

Calc I: \(f: \mathbb{R}^1 \to \mathbb{R} \)

By Taylor's Thm,
\[
f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2 + \text{error.}
\]

At critical number, \(f'(a) = 0 \)
$$f(x) = f(a) + f''(a) \frac{(x-a)^3}{3!} + \text{error}$$

$$f(x) - f(a) \approx f''(a) \frac{(x-a)^3}{3!} \text{ if } x \text{ very near } a.$$

2nd Deriv Test

- If $f''(a) > 0 \implies f(x) - f(a) > 0$ for all x near a
 $\implies f(a)$ is a local min.
- If $f''(a) < 0 \implies f(x) - f(a) < 0$ for all x near a.
 $\implies f(a)$ is a local max.
- If $f''(a) = 0 \implies$ test inconclusive

Calc III: 2nd DT for scalar-fn of d variables.

Let $f: \mathbb{R}^2 \to \mathbb{R}$ be C^2
Let (a,b) be a critical point of the type $\nabla f(a,b) = \mathbf{0}$.

The 2nd-order Taylor approx. of f at (a,b) is

$$f(x,y) = f(a,b) + f_x(a,b) (x-a) + f_y(a,b) (y-b)$$

$$+ \frac{1}{2} \left[f_{xx}(a,b) (x-a)^2 + 2f_{xy}(a,b) (x-a)(y-b) + f_{yy}(a,b) (y-b)^2 \right]$$

+ error term

Since $\nabla f(a,b) = \mathbf{0}$ and letting $\Delta x = x-a$, $\Delta y = y-b$,
\[f_{xx} - f_{xy} = \frac{1}{2} \left[f_{xx} \Delta x^2 + 2f_{xy} \Delta x \Delta y + f_{yy} \Delta y^2 \right] \]

for all \((x,y)\) near \((a,b)\).

Completing the square:

\[f(x, y) - f(a, b) \approx \frac{1}{2} \left[f_{xx} \left(\frac{\Delta x^2}{f_{xx}} \right) + f_{xy} \Delta x \Delta y + \left(\frac{f_{xy}}{f_{xx}} \right)^2 \Delta y^2 \right] \]

\[= \frac{1}{2} \left[f_{xx} \left(\frac{\Delta x^2}{f_{xx}} \right) + f_{xy} \Delta x \Delta y + \left(\frac{f_{xy}}{f_{xx}} \right)^2 \Delta y^2 \right] \]

+ we always

+ we always

The sign of \(f_{xx} - f_{xy}\) near \((a,b)\) can be determined:

1. \(f_{xx} > 0\) and \(f_{xx} - f_{xy} > 0\), then
 \[f(x, y) - f(a, b) > 0 \] for all \((x,y)\) near \((a,b)\),
 - \(f\) has a local min at \((a,b)\).

2. \(f_{xx} < 0\) and \(f_{xx} - f_{xy} > 0\), then
 \[f(x, y) - f(a, b) < 0 \] for all \((x,y)\) near \((a,b)\),
 - \(f\) has a local max at \((a,b)\).

3. If \(f_{xx} - f_{xy} < 0\), then different \(\Delta x\) and \(\Delta y\)'s result in different signs for \(f(x,y) - f(a,b)\),
 - \(f\) has neither a max or min at \((a,b)\).

4. If \(f_{xx} - f_{xy} = 0\), test inconclusive.
Example: let $f(x,y) = -x^2 + y^2$

Critical points: \[Df(x,y) = \begin{vmatrix} -2x & 2 \hline 2 & 0 \end{vmatrix} \]
\[Df(0,0) = \begin{vmatrix} 0 & 0 \hline 0 & 0 \end{vmatrix} \text{ with } (x,y) = (0,0). \]

\[f_{xx}(x,y) = -2, \]
\[f_{xy}(x,y) = f_{yx}(x,y) = 0, \]
\[f_{yy}(x,y) = 0. \]

Note $f_{xx}(0,0) = -2 < 0$ and $f_{xx}(0,0)f_{yy}(0,0) - f_{xy}(0,0)^2 = -2(0) - 0^2 = -4 < 0$

This is case 3 above: $(0,0)$ is neither a max or min.

Points $z = -f(x,y)$ is the classic saddle surface.

In general, we call critical points of this type saddle points.
Ex. \(f(x,y) = x^4 + y^4 - 4xy + 1 \)

Has critical points \((0,0), (1,1)\) and \((-1,-1)\).

Classify the critical points.

\[
f_x(x,y) = 4x^3 - 4y, \quad f_y(x,y) = 4y^3 - 4x
g_{xx} = 12x^2, \quad g_{xy} = g_{yx} = -4, \quad g_{yy} = 12y^2.
\]

Note: \(D = g_{xx}g_{yy} - g_{xy}^2 = (12x^2)(12y^2) - (-4)^2 = 144x^2y^2 - 16 \)

\[\text{At } (0,0): \]
\[g_{xx}(0,0) = 12(0)^2 = 0 \quad D(0,0) = 144(0)^2(0)^2 - 16 = -16 < 0 \]

a saddle point at \((0,0)\).

\[\text{At } (1,1): \]
\[g_{xx}(1,1) = 12(1)^2 = 12 > 0 \quad D(1,1) = 144(1)^2(1)^2 - 16 > 0 \]

a local min at \((1,1)\) of \(f(1,1) = -1\).

\[\text{At } (-1,-1): \]
\[g_{xx}(-1,-1) = 12(-1)^2 = 12 > 0 \quad D(-1,-1) = 144(-1)^2(-1)^2 - 16 > 0 \]

a local min at \((-1,-1)\) of \(f(-1,-1) = -1\).
Topic: Constrained Optimization

Ex: Find abs. max and mins of
\[f(x, y) = x^2 + y^2 - x - y + 1 \] on the closed disk \(x^2 + y^2 \leq 1 \).

\[f(x, y) \text{ a poly.} \Rightarrow \text{cont. fn} \]

The disk \(D: x^2 + y^2 \leq 1 \) is closed (contains its boundary curve) and bounded.

By defn. \(\| (x, y) \| \leq 1 \) for all \((x, y) \) in \(D \).

By Max-Min Thm, \(f(x, y) \) attains a max and a min value on \(D \) (either in interior or on boundary).

For interior max-min, use 2nd D.T.

For exterior (on boundary) need something else.

\[\nabla f(x, y) = (2x - 1, 2y - 1) \]
\[\text{If } (x, y) = 0 \quad \text{then } x = \frac{1}{2} \text{ or } y = \frac{1}{2} , \]

\[f \left(\frac{1}{2}, \frac{1}{2} \right) = \frac{1}{4} . \]

(Recall: don't need to classify this pt!

need to compare it to values of \(f \)
on the boundary.)
disc 2: examining the boundary.

We need to parameterize the boundary
\[x^2 + y^2 = 1 \Rightarrow r(\theta) = (\cos \theta, \sin \theta), \quad 0 \leq \theta \leq 2\pi. \]

\(f(\theta) \) restricts \(f \) to the boundary curve:
\[f(\theta) = \cos^2 \theta + \sin^2 \theta - \cos \theta - \sin \theta + 1 \]
\[= -\cos \theta - \sin \theta + 1 \quad \text{on} \quad 0 \leq \theta \leq 2\pi. \]

To find max + min values, use EVT on \(f(\theta) \).

\[f(\theta) = \cos \theta - \sin \theta \]
\[f(\pi) = 0 \quad \text{when} \quad \theta = \frac{\pi}{4} \text{ and } \theta = \frac{3\pi}{4} \]

When \(\theta = \frac{\pi}{4} \), \(r(\theta) = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \right) \) and \(f\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \right) = 2 - \sqrt{2} \)

When \(\theta = \frac{3\pi}{4} \), \(r(\theta) = \left(\frac{-\sqrt{2}}{2}, \frac{-\sqrt{2}}{2} \right) \) and \(f\left(\frac{-\sqrt{2}}{2}, \frac{-\sqrt{2}}{2} \right) = 2 + \sqrt{2} \)

Also need to check endpoints of \(\theta \)'s interval.

\[f(0) = f(2\pi) = (1,0) \]
\[f(1,0) = 1. \]

Combining all info: max of \(f \) is 2 + \(\frac{\sqrt{2}}{2} \) at \(\left(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2} \right) \)

min of \(f \) is 1/2 at \(\left(\frac{1}{2}, \frac{1}{2} \right) \)
topic: method of Lagrange multipliers.

A geometric method for locating max and min values of \(f(x) \) subject to a boundary condition \(g(x) = C \).

Ex: Find the extrema of \(f(x,y) = y^2 - x^2 \) subject to \(x^2 + y^2 = 1 \).

\[z = f(x,y) \text{ a saddle surface} \]

\[\text{constraint} \ x^2 + y^2 = 1 \]

intersection of constraint and the surface.

Look at level curves:

\[y^2 - x^2 = C \]
\[y^2 = x^2 + C \]

level curves of \(f(x,y) \) are tangent to the level curve \(x^2 + y^2 = 1 \) when the max + min occur,
How do we use this?

Recall that gradients are normal to level surfaces.

If the level curves/surfaces are tangent at a point, then the gradients must be parallel.

General picture:

Constraint the surface \(g(\vec{x}) = C \).

\[\nabla g(\vec{x}) \]

Tangent surfaces: max/min here!

Level surfaces \(f(\vec{x}) = k \).

If \(f(\vec{x}) = k \) and \(g(\vec{x}) = C \) are tangent at \(\vec{x} = \vec{a} \), then \(\nabla f(\vec{a}) \parallel \nabla g(\vec{a}) \).

That is, \(\nabla f(\vec{a}) = \lambda \nabla g(\vec{a}) \) for some scalar \(\lambda \).
Thm: Lagrange Multipliers

Let \(f, g : \mathbb{R}^n \to \mathbb{R} \) be \(C^2 \). Let \(S = \{ x \in \mathbb{R}^n \text{ such that } g(x) = 0 \} \). Let \(\bar{a} \) be a point in \(S \) and assume \(\nabla g(\bar{a}) \neq \bar{0} \). Then, if \(f \) has a max or min on \(S \) at \(\bar{a} \), then there is a real number \(\lambda \) such that \(\nabla f(\bar{a}) = \lambda \nabla g(\bar{a}) \).

Def: \(\lambda \) is called a Lagrange multiplier.

Ex: Back to \(f(x,y) = x^2 + y^2 - x - y + 1 \) subject to \(x^2 + y^2 = 1 \).

Here \(g(x,y) = x^2 + y^2 \).

\[\nabla f(x,y) = \lambda \nabla g(x,y) \]

\[(2x-1, 2y-1) = \lambda (2x, 2y) \]

or \[2x-1 = \lambda 2x \]

\[2y-1 = \lambda 2y \]

Solve these eqns any way you can.

1. Always check \(\lambda = 0 \).

\[\lambda = 0 \Rightarrow 2x-1 = 0 \Rightarrow x = \frac{1}{2} \]

\[2y-1 = 0 \Rightarrow y = \frac{1}{2} \]

Note \(\left(\frac{1}{2}, \frac{1}{2} \right) \) is not on the constraint \(x^2 + y^2 = 1 \).
\[\text{Given: } \frac{dx}{1-x} = \lambda x \Rightarrow \lambda = 1 - \frac{1}{dx} \]

\[\frac{dy}{1} = \left(1 - \frac{1}{dx}\right) dy \]

\[\frac{dy}{dx} - 1 = \frac{y}{x} \quad \Rightarrow \quad x = y. \]

Using constraint eqn,
\[\frac{1}{x^2 + y^2} = 1 \quad \Rightarrow \quad 2x^2 = 1 \text{ or } x = \pm \frac{\sqrt{2}}{2}. \]

Solve pts: \(\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) \) and \(\left(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right) \)

Same pts found before,
\[f\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) = 2 - \sqrt{2} \quad \text{min of } f \text{ on } x^2 + y^2 = 1 \]

\[f\left(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right) = 2 + \sqrt{2} \quad \text{max of } f \text{ on } x^2 + y^2 = 1 \]