So, discarding any copies \(\otimes T \) or \(S \times I \) (and in dimensions \(H_2(M,DM; \mathbb{Z}) \)), get \(S'' \vee Y(S''') = X(S'') \), \(\text{[S’’]} \rightarrow [S’’] \)
and \(X_-(S'') = X_-(S') = X_-(S') + X_-(S') = x_0(x_0 + X_0) \).

\(\therefore \), \(x_0(x_0 + X_0) \leq X_-(S''') = X_0(x_0 + X_0) \).

Prove the claim 17.

For every \(x, y \in H_2(M,DM; \mathbb{Z}) \), \(n, m \in \mathbb{Z}_+ \) we have

\[x(nx + my) = x(nx) + mx(y) = n x(x) + mx(y). \quad (\star 2) \]

Next, extend \(x \) to \(H_2(M,DM; \mathbb{Q}) \) so that \(\forall x \in H_2(M,DM; \mathbb{Z}) \)

\[x(r \alpha) = r x(\alpha), \]

by \((\star 1) \), independent choice of \(r \alpha \):

\[x\left(\frac{r}{k} (x) - \frac{r}{k} (x)\right) = \frac{r}{k} x(x) = \frac{r}{k} x \alpha \]

\[= r x(\alpha). \]

\(\Rightarrow \) Well defined on \(H_2(M,DM; \mathbb{Q}) \). By \((\star 2) \), it

is convex: \(\forall \alpha, \beta \in H_2(M,DM; \mathbb{Z}) \)

\[x((1-t)\alpha + t\beta) = x(\frac{t}{k} (1-t) \alpha + t \beta) = \frac{t}{k} x(k(1-t) \alpha + k \beta) \]

\[\leq \frac{1}{k} (k(1-t)x + k \beta) = (1-t)x(x) + tx(\beta) \]

\[\Rightarrow \] \(x \) has a unique continuous extension to \(H_2(M,DM) \), \(\forall \)

\[x(x + \beta) \leq x(x) + x(\beta) \] \(\forall x, \beta \in H_2(M,DM) \),

and \(x(tx) = tx(x) \) \(\forall t \in \mathbb{R}_+, x \in H_2(M,DM) \),

\(\Rightarrow \) \(x(x) = 0 \Rightarrow x = 0 \) (by construction, \(x(x) = x(x) \) \(\forall x \in H_2(M,DM; \mathbb{Z}) \) heuristically).
The norm \(\| \cdot \| \) is very different than most norms generally considered — never comes from an inner product, for example.

In fact, if we let \(\mathcal{B} \) be the unit ball in \(H^2(M, \mathbb{M}) \), and \(\mathcal{B}^* \) unit ball for dual norm \(H^2(M, \mathbb{M}) \), then here

Theorem 4.3

\(\mathcal{B}^* \) is a polyhedron in \(H^2(M, \mathbb{M}) \) whose vertices are lattice points, \(\pm \beta_{i,k} \), and the unit ball \(\mathcal{B}_x \) is a polyhedron defined by

\[
\mathcal{B}_x = \{ x \mid 1^T x \beta_i, |x_i \beta_i| \leq 1 \text{ for } 1 \leq i \leq k \}
\]

If \(\mathbb{M} = \mathbb{R} \), \(\beta_i \) are even. (\(\beta_i = 2 \phi_i \))
proof of theorem 4.3. This has nothing to do with \mathbb{F}_2-

This is a fact about norms taking \mathbb{Z}-values on an \mathbb{Z}-lattice in \mathbb{R}^n.

Let B_x be unit ball.

Claim: $\forall a \in H_2(M, M; \mathbb{Z}), \exists$ an integral linear function:

$L_a: H_2(M, M; \mathbb{Z}) \rightarrow \mathbb{Z}$ (so $L_a(H_2(M, M; \mathbb{Z})) \subseteq \mathbb{Z}$) \wedge

$L_a(a) = x(a)$ and $B_x \subseteq L^{-1}_a(\{0\})

Note that L is an integral elt of

$H^2(M, M; \mathbb{Z}) \cong (H_2(M, M; \mathbb{Z}))^*$

Thus, since rays through $H_2(M, M; \mathbb{Z})$ are dense in $H_2(M, M)$

we have

$B_x = \cap L^{-1}_a((0, 1])_{a \in H_2(M, M; \mathbb{Z})} \wedge x^*(L_a) = \sup_{y \in B_x} L_a(y) = 1

So, $\{L_a\}_{a \in H_2(M, M; \mathbb{Z})}$ all lie in B_{x^*} which is open, and

hence this is a finite set and B_x is the required polyhedron.

proof of claim when $H_2(M, M; \mathbb{Z}) \cong \mathbb{Z}^2$. See Thm. 4.3 dum = \mathbb{Z},
giving good idea.

Pick an isomorphism $H_2(M, M; \mathbb{Z}) \cong \mathbb{Z}^2$ w/ $H_2(M, M; \mathbb{Z}) \cong \mathbb{Z}^2$ and

$a = (0, 1), \ b = (1, 0)$, write $x(a) = m$ and $x(ka + kb) = x(k1) = nk, \
\forall k \in \mathbb{Z}^>0$. Note $n, k \in \mathbb{Z}, \ \forall k.

Let $L_k = \mathbb{Z}$ linear function agreeing w/ x on a and $ka + kb$
\(L_k^{-1}(1) \) meets lines through \(a \) and \(k \) at \(\partial B_2 \).

Here are the pts \(t_m(0,1) \) and \(t_n(1,k) \).

The slope of \(L_m^{-1}(1) = \frac{t_n - t_m}{m} = k - \frac{n}{m} = \frac{k \cdot m - n}{m} \).

These slopes are non-decreasing by convexity.

And bounded above by \(\frac{k}{m} = \frac{n_0}{m} \) by convexity.

Since we have a bound on denominators, \(L_k^{-1}(1) = L_{k'}^{-1}(1) \) \(\forall j \geq k \)

for some \(k \) sufficiently large. By convexity, in fact, once \(L_k^{-1}(1) \) and \(L_{k'}^{-1}(1) \) are the same for some \(k \), then

\[\mathbb{P}_+(D,1) + \mathbb{P}_+(1,k), \quad x = L_k \]

Setting \(L_a = L_k \) completes the proof. \(\square \)
Example. Let $L \subset S^3$ be a link of k-components.

This is an embedding of
\[\bigsqcup_{i=1}^k S^1 \subset S^3. \]

Let $M = S^3 \setminus N(L)$ = exterior of L

3-manifold $\partial M \approx \mathbb{R}^2$.

If $L = L_1 \cup \ldots \cup L_k$, then Excision. Why? Why not L.E., sq. sq. rel. hand,

\[H_2(M, \partial M) \cong H_2(S^3, N(L)) \cong H_2(S^3, L) \cong H_1(L) = H_1(\mathbb{R}^2) \cong \mathbb{R}^k. \]

and similarly, L_i get an integral π_i for this bundle. $\partial L_i \approx L_i$.

To more directly relate these L_i to an ell of $\partial(M \cup M)$ take any surface $\approx S^2$ whose boundary is L_i, then $S_i \cap M$ (oriented S_i)

denoted S_i, give a unique representation by the class.

\[\text{Ex: } W = L_1 \cup L_2 \subset S^3 \text{ the Whitehead link. } \]

Fact: ∂W is treed, abraded, i.e. ~ later maybe...

\[L_i = 2D_i, \ D_i \text{ a disk. } \]

so $S_i \cap M$ is disk w/ 2 holes (or paired punctures).

\[\chi_-(S_i) = -1 \]

So, $1 \leq \chi(L_i) \leq \chi_-(S_i) = 1$

$\partial L_1 + L_2 = \partial S_i$

\[\chi_-(S) = 2 \]
Since \(S' \) must have at least 2 boundary components, we have

\[X_-(S') \leq -2g - 2 = -2g. \]

If \(g = 0 \), then \(S' \) is annulled after having \(\geq 4 \) boundary components, so \(X_-(S') = -2 \). \(\therefore \), \(X(S') = X(L_1 + L_2) \), so

\[\frac{2}{2} \]

can draw 2 faces. Similar argument (or symmetric).

By a similar calculation (see Theorem), one can compute

\[\frac{2}{2} \]

for the Barrowman rings.
Fibered 3-manifolds

The Thurston norm is particularly useful in studying 3-manifolds that fiber over S^1: $S \to M \to S^1$.

For $z \in S^1$, $\pi^{-1}(z) \cong S$ and let $N(z) \cong \mathbb{R}/1\mathbb{Z}$ we have

$$
\pi^{-1}(N(z)) \cong S \times \mathbb{R}/1\mathbb{Z}, \quad L.E.S., \quad \ker \gamma^3 \cong \mathbb{Z}.
$$

So, $M = M_\phi$ for some $\phi : S \to S$. (Recall M is irreducible.)

ϕ is called the monodromy and is well-defined up to isotopy.

Proposition 4.14: Suppose M is fibered by fiber S, $\chi(S) < 0$ and monodromy ϕ. Then M is abelian iff ϕ is reducible.

- ϕ is reducible if $\exists C \subset S$ a union of non-null tori, non 3-balls, $S^2 \cup_\phi S^2$ is isotopic to C, or ϕ is irreducible.
- ϕ is periodic if $\phi^k \equiv \text{id}$ for some $k > 0$.

Proof: If ϕ is reducible, let C be as in (a), apply isotopy of ϕ, so $\phi_0(C) = C$. Then $C \times S^1 \cong C \times [0,1] \to M_{\phi_0} \cong M_\phi$ projects to a union of noncompressible, which are not irreducible, $S^2 \cup_\phi S^2$, these lift to a union of annuli $C \times R^2 \cong C \times [0,1]$.

Conversely, suppose \(\phi \) is irreducible and \(T \) an irreducible tranverse \(T \subset M \).

By step 4, make \(T \) closed and assume \(|S^1| \) is minimal.

If \(T \) is not irreducible, \(\text{M-intersect} \) no disk comps of \(T \) or \(S^1/T \).

Since \(X(T) = 0 \), all comp of \(T \) or \(S^1/T \).

No disks in \(S^1/T \Rightarrow S^1/T \text{ is a union of non-annular } S^1 \text{ s.}

Annuli \(T/S \) determine an isometry from \(C \to \phi(C) \) (requires some work).

\(\text{so } C \text{ is } T \text{-parallel} \Rightarrow T \text{ is } T \text{-parallel.}

\(\text{so no counts like this by minimality.} \quad \square \)

Ex

Conclude irreducible homomorphism.

Euclidean metric w/ singular 3 from vertex at \(z_0 \).

Note linear maps \(T_1 = (0, 1) \) and \(T_2 = (1, 0) \).

Define maps \(d\phi \) which are "affine" on \(S^1(\pi) \) and have derivatives \((\phi') \) \& \((\phi')' \) w.r.t. basis \((e_1, e_1')\)

for \(T \), at all \(z \in S^1 \).

Let \(G = \langle T_1, T_2 \rangle \) the group of homom \((\text{diffs of } S^1(\pi)) \).

Get \(D(G) \to \mathbb{SL}_2 \) by taking deriv. w.r.t. \((e_1, e_1')\), thus a homomorphism by chain rule: \(D(fh) = Df \circ D(h) \).

\[D(G) = \langle (0, 1), (1, 0) \rangle < \mathbb{SL}_2 \]
Support $\varphi \in G$ is any elt w/ $|\text{tr}(D\varphi)| > 2$

(true for any elt not conj to a power of T_{1, T_2} or T_{1, T_3})

(e.g. $T_1 \cdot T_2$, 2×2)

By square, we can assume $\text{tr}(D\varphi) > 2$. The $D\varphi$ has 2 eigenvalues $2, \frac{1}{2}$ w/ $2 > 1$. Let U, V be eigenvectors. These define parallel vector fields on $S^2(S^3)$ and integrating these gives 2 solutions of $S^2(S^3)$ by straight lines, γ_+, γ_-.

Note of Stretch: all lines γ_+ γ_- by A and contract all lines γ_+ γ_- by $\frac{1}{A}$.

Given any curve ω on S^2, apply stretching to make a geodesic.

If $\omega \subset S^2(S^3)$, the ω is a closed geodesic. Otherwise ω is a concatenation of straight lines from ω to itself. In any case $\varphi^\omega(\omega^\omega)$ is the geodesic rep of $\varphi(\omega)$ (i.e., $\varphi(\omega)$ is metric is non-posit).

and length $\|\varphi^\omega(\omega^\omega)\| = \infty$: indeed, $\varphi^\omega(\omega^\omega)$ looks more and more like ω^ω, γ_\pm. In particular, φ cannot be reducible.

This structure: Sing. curve metric (rpc) φ affine preserves sides γ_+, γ_-, stretches γ_+ by $2 > 1$ contract γ_- by $\frac{1}{2}$, makes φ a pseudo-anosov homomorphism.

Theorem (Thurston) If φ is ended, non-periodic, then $\varphi \in \mathcal{P}_0$, pseudo-Anosov.