Last time we defined a knot in \mathbb{R}^3 to be a polygonal embedding $K: S^1 \to \mathbb{R}^3$ (or its image $K = K(S^1)$).

A nice projection exists and gives us a diagram of the knot.

Can view D as a graph with vertices of valence 2 (images of vertices of K) and vertices of valence 4 (the crossings), the latter marked as over/under.

Also defined equivalence relation on knots (w/ 3 different descriptions).

Exercise III: If K, K' have the same diagram, then $K \sim K'$.

What if the diagrams are different?

Let's look at ways the diagrams could be different:

Planar isotopy:

Suppose K, K' have diagrams D, D' in a plane \mathbb{R}^2, say D, D' are related by planar isotopy if $\exists H : \mathbb{R}^2 \times [0,1] \to \mathbb{R}^2$ w/ $H_0 = \text{identity on } \mathbb{R}^2$, $H_1(D) = D'$ respecting over/unders at crossings.
then $K \sim K'$ extend H by identifying a 3rd coordinate in \mathbb{R}^3 to a map $\tilde{H}: \mathbb{R}^3 \times [0,1] \to \mathbb{R}^3$, $\tilde{H}(K) = K$ is a knot with the same projection at K', so $K \sim \tilde{H}(K) \sim K'$.

Reidemeister moves: There are 3 ways to modify the diagram of a knot that clearly does not change the knot type, these are called the Reidemeister moves;

- D,D' $\subset \mathbb{R}^2$ two diagrams, the same outside a disk; differing in the disk by:
 - type I: \[\begin{array}{c} \text{disk} \quad \leftrightarrow \quad \text{disk} \end{array} \]
 - type II: \[\begin{array}{c} \text{disk} \quad \leftrightarrow \quad \text{disk} \end{array} \]
 - type III: \[\begin{array}{c} \text{disk} \quad \leftrightarrow \quad \text{disk} \end{array} \]

- [Exercise I.2: Show that the other Reidemeister moves below are a consequence of these 3 (and planar isotopy).]

Theorem I.3: K, K' two knots an equivalent iff the diagrams D, D' for K, K' differ by a finite sequence of Reidemeister moves I, II, III and planar isotopy.

Idea of proof: Need to see if $K \sim K'$, then D, D' differ as in theorem.

Know $\exists K = K_1, K_2, \ldots, K_n = K'$ w/ K_i, K_{i+1} related by triangle move!
By small change in projection \(\pi : \mathbb{R}^3 \rightarrow \mathbb{R}^2 \) we can assume \(\pi \) is a nice projection for every \(K_i \). [Also note that small change of projection changes \(D \& D' \) to planar isotopic diagrams.]

Further, we can assume \(\pi \) is injective on all triangles defining moves. Now replace each triangle move with finitely many small moves of type I, II, and III. E.g.,

![Diagram showing three moves I, II, and III]

[Remark: We can essentially take this theorem as definition of equivalence — i.e., Knutill diagrams are related as a thin. This allows us to view knots and question of equiv. of knots as a combinatorial problem.]

How does this help? [replaced existence/non-existence of one type of sequence with another]

We can use this to define knot invariants:
Let \(\text{Knot}(\mathbb{R}^3) \) be the set of all knots in \(\mathbb{R}^3 \).

Def. A knot invariant is a function

\[
F : \text{Knot}(\mathbb{R}^3) \to S \quad
\]

where \(S \) is a set with an equivalence relation \(\cong \) on it such that if \(K \cong K' \), then \(F(K) \cong F(K') \).

\(S \) could be a set of groups, abelian groups \((\cong \text{equivalence}) \), or polynomials, \(\mathbb{R}, \mathbb{Z}, \mathbb{C} \), or trivial relation \(\approx \). Anything!

How do we use Reidemeister moves to do this?

Ex. \(\text{Tria} : \text{Knot}(\mathbb{R}^3) \to \mathbb{Z} \)

\(\text{Tria}(K) \) is defined as follows: Let \(D \) be a diagram of \(K \)

\(\text{Tria}(K) = \# \) of ways to color overpassing arcs of \(D \) with 3 colors (using at least \(2 \)) so that at any crossing, either all 3 colors appear, or exactly one does:

\[
\begin{array}{c}
\text{K = trefoil, } \text{Tria}(K) = 60 \quad \text{(if two arcs are same color, all are)} \\
\end{array}
\]

If \(K \cong K' \), why is \(\text{Tria}(K) = \text{Tria}(K') \)? check invariance under \(\text{RI, II, III} \);

that is, if \(D \cong D' \) by \(\text{RI, II, III} \), then a coloring of one uniquely determines a coloring of the other.
III: orbit-1 correspondence between oarves of D & D'

![Diagrams](image)

check:
1. w, w' are determined by u, v, x, y, z - easy ($u, v, w \in \mathbb{S}^1$)
2. If u, v, x, y, z, w is allowable, then $\exists w'$ s.t. u, v, x, y, z, w' is allowable (it's unique by (1)) - cases $x \neq y, z$ exactly 1 possibility
3. If $x = y, z$ then w, w' exactly 1 possibility.

This proves

Theorem 1.4 Tri is a knot invariant

Corollary 1.5 $\mathbb{S}^0 \neq \emptyset$

Links: A link is a collection of pairwise disjoint knots.

Def: A link is a (polygonal) embedding $L: \mathbb{S}^1 \times [0, 1] \rightarrow \mathbb{R}^3$. We also write $L = L(S^1)$. The restriction to one of the circles is called a component $L_i: L_i: S^1 \rightarrow \mathbb{R}^3$ (or $L_i(S^1) = L_i$) and each L_i is a knot.

Say L has k components in the case. Can an empty link be a knot?

Some definition of equivalence, and

1.1-1.4 also hold for links.

k-component unlink:
Corollary I.6: There are infinitely many, pairwise inequivalent knots.

Proof: Consider the knot K_k:

\[\text{trefoil} \]

Check that there are $3(3^k - 1)$ tricolorings, so

\[\text{Tri}(K_k) = 3(3^k - 1) . \]

Therefore, $\text{Tri}(\text{Knot}(\mathbb{R}^3))$ is infinite, hence so is the # of equivalence classes in Knot(\mathbb{R}^3).

Exercise I.3 There are only a countably infinite number of equivalence classes of knots. (Of course, Knot(\mathbb{R}^3) is uncountable)

Link example:

\[W = \text{White head link} \]

Note: $W \neq 00$ since $\text{Tri}(W) = 0$, but $\text{Tri}(00) = 6$.