This requires a little more story...

A retraction \(r: X \to A \) is a continuous map of a top.
space \(X \) to a subspace \(A \subset X \) st \(r(a) = a \ \forall a \in A \).

Proposition III.49 If \(x \in A \subset X \) and \(r: X \to A \) is a
retraction then \(r_X: n_x(X, x) \to n_x(A, x) \) is surjective. If \(r_X: n_x(x, a) \to n_x(x, r(x)) \)
is injective, when \(i: A \to X \) is inclusion \(\Box \).

Proof (exercise) (special case \& def. retraction \(r_x = (i_x)^{-1} \)). \(\Box \)

Corollary III.50 If a retraction \(r: \overline{B^2} \to S^1 \).

Proof: \(n_1(\overline{B^2}) = \pi_1(S^1) \). \(\pi_1(S^1) \cong \mathbb{Z} \). \(\Box \)

Proof of BPT. Suppose \(\exists f: \overline{B^2} \to \overline{B^2} \) w/ no fixed pt.

Define \(r: \overline{B^2} \to S^1 \) as follows. \(\forall x \in \overline{B^2} \), let \(L_x \)
be the line through \(x \) \& \(\text{fix} \). \(\text{WELL DEFINED} \) \(\sin \theta = r_x \).
oriented from \(\text{fix} \) toward \(x \). Define \(r(x) \in S^1 \) to be
the 1st point of intersection of \(L_x \) \& \(S^1 \) st. \(r(x) = x \) on \(L_x \)
— so \(r\text{fix}=x \) if \(x \in S^1 \). Check continuous. This is a
retraction, contradicting III.49 \(\Box \).

Another application is:

Fundamental Theorem of algebra III.51 Any nonconstant polynomial
\(f(z) \in \mathbb{C}[z] \) has a root in \(\mathbb{C} \).
Proof: WLOG, write \(p(t) = t^n + a_{n-1}t^{n-1} + \ldots + a_1t + a_0 \) with \(n \geq 0 \).

Assume \(p(t) \) has no roots in \(\mathbb{C} \). A \(\mathbb{R} \) define

\[
\chi_r(t) = \frac{p(re^{2\pi i t})/p(r)}{1+p(re^{2\pi i t})/p(r)}
\]

which is a loop based at \(1 \) in \(\mathbb{S} \) for all \(r > 0 \).

Since \(\chi_0(t) \) is constant, \([\chi_r] = [\chi_0] = \Delta \), \(r > 0 \).

(b/c \(\chi_r \to \chi_0 \) as \(r \to 0 \))

Now consider the 1-parameter family of polynomials

\[
P_s(z) = z^n + \frac{s}{(a_{n-1}z^{n-1} + \ldots + a_1z + a_0)}, \quad s \in [0,1].
\]

This gives loops \(\chi_{r,s} \) defined via \(P_s \) as \(\chi_r = \chi_{r,1} \) is via \(P = P_1 \).

If \(r \) is sufficiently large (at least \(|a_0 + a_{n-1}| + 1 \))

Check: \(P_s \) has no roots on \(\{ z : |z| = r/2 \} \). For any \(s \), then

\[
\chi_{r,s}(t) = e^{r t} \frac{e^{2\pi i s/n}}{e^{2\pi i s/n}} = e^{2\pi i s/n}, \quad [\chi_{r,s}] \neq 0 \text{ in } H_1(\mathbb{S}^1, \mathbb{S})
\]

and since \(\chi_{r,0} \to \chi_{r,1} \), we have a contradiction \(\square \)

... And another...

Borsuk-Ulam Theorem (1=2) III. 52

If \(f : S^2 \to \mathbb{R}^2 \) is continuous, \(\exists x \in S^2 \) \(f(x) = f(-x) \). (in \(f \) identifies a pair \(x, -x \) antipodal)

Proof: Sketch — assume not, set \(g(x) = \frac{(f(x) - f(-x))}{|f(x) - f(-x)|} \) observe \(g : S^2 \to S^1 \) and \(g(-x) = -g(x) \), check that \(g([\text{Equator}]) \) is non-trivial in \(H_1(S^1) \). This contradicts fact [equator] \(= 1 \) in \(H_1(S^2) \) \(\square \)
Proposition III 5.4 \[\pi_1(X \times Y, (x,y)) \cong \pi_1(X,x) \times \pi_1(Y,y) \]

Proof: Viewing \(X \times Y \) as \(\mathbb{R} \times \mathbb{R} \), the projections \(p_x: X \times Y \to X \) and \(p_y: X \times Y \to Y \) clearly are \((p_x)_* \times (p_y)_*: \pi_1(X \times Y, (x,y)) \to \pi_1(X,x) \times \pi_1(Y,y) \) and

\[(g \times h) \mapsto (g \times (h), g \times y) \]

is the map of \(\mathbb{R} \times \mathbb{R} \).

If \(x \leq x_1, y \leq y_1 \), then \(x \times y \leq x_1 \times y_1 \), so \(\ker (p_x)_* \times (p_y)_* \) is trivial \[\square \]

Corollary III 5.5 \[\pi_1(T^n) \cong \mathbb{Z}^n \quad \forall n \geq 1 \]

Proof: \(T^n \cong S^1 \times S^1 \times \cdots \times S^1 \), which is a product of \(\pi_1 \).

\[\pi_1(S^m \times S^n) \cong \pi_1(S^1) \cong \mathbb{Z} \quad \forall m, n \geq 2 \]

Proposition III 5.3 \[\mathbb{R}^2 \cong \mathbb{R}^n \implies n = 2 \]

Proof: We have already seen that \(\mathbb{R}^n \cong \mathbb{R}^2 \) is homotopy equivalent to \(S^{n-1} \). So \(\mathbb{R}^2 \cong \mathbb{R}^n \implies S^1 \text{ homotopy equivalent to } S^{n-1} \).

If \(n = 1 \), \(S^0 = \{0, \infty\} \), disconnected. \[\uparrow \]

If \(n > 2 \), \(\pi_1(S^{n-1}) = \{1\} \) \[\uparrow \]

So, \(n = 2 \). \[\square \]

Remark: \(S^k \) is disconnected only for \(k = 0 \) \[\implies \pi_1 \cong \mathbb{Z}^n \implies n = 1 \]
Definition: A map \(p: \tilde{X} \rightarrow X \) is called a covering map if
\[\forall x \in X, \exists \text{ a nbhd } U_x \text{ of } x \text{ st } \]
\[p^{-1}(U_x) = \bigsqcup V_x^\alpha \text{ is a disjoint union of } \tilde{X} \text{ open and } \]
\[V_x^\alpha \subset \tilde{X} \text{ open and } \]
\[p|_{V_x^\alpha} : V_x^\alpha \rightarrow U_x \text{ a homeomorphism } \forall x \in X. \]

The key property of covering spaces is homotopy lifting:

Lemma 3.56
If \(p: \tilde{X} \rightarrow X \) is a covering map, \(f: Y \rightarrow X \)

is a map with \(\tilde{f} : Y \rightarrow \tilde{X} \), and \(H: Y \times I \rightarrow X \) \(\text{ a homotopy of } \)

\(f \) rel \(A \), then \(\exists ! \) lift \(\tilde{H}: \tilde{Y} \times I \rightarrow \tilde{X} \) of \(H \) which is a homotopy of \(\tilde{f} \)

rel \(A \).

Proof: Same idea as in proof of Lemma 3.56: Exact same proof.

Given \(\exists ! \text{ unique lift } \tilde{f}|_{\tilde{Y} 	imes \{0\}} \).

So, we have \(\tilde{f} \) and \(\tilde{H} \) continuous on \(\tilde{Y} \times I \).

So, we have \(\tilde{H} \) that covers \(f \) rel \(A \).

(Unique by unique lift \(\tilde{f}|_{\tilde{Y} \times \{0\}} \)). \(\Box \)

Corollary 3.57
If \(p: \tilde{X} \rightarrow X \) is covering map, \(f: \tilde{X} \rightarrow Y \), \(\tilde{f} \) \(\text{ is } \)

then \(\exists ! \text{ lift } \tilde{f}: \tilde{X} \rightarrow \tilde{Y} \) if \(H \) is homotopy of \(f \) rel \(\tilde{Y} \).

then \(\exists ! \text{ lift } \tilde{H} \) which is a homotopy of \(\tilde{f} \) rel \(\tilde{Y} \). \(\Box \)

Proposition 3.58
If \(p: \tilde{X} \rightarrow X \) is covering space, \(\tilde{f}: (\tilde{X}, \tilde{x}) \rightarrow (X, \tilde{x}) \) the

\(p \circ (\tilde{f}) \) is injective. \(p_*(\pi_1((\tilde{X}, \tilde{x})) \rightarrow \pi_1((X, \tilde{x})) \)

\(\tilde{f} \) lifts to a loop \(f \) on \(X \) based at \(\tilde{x} \).

Proof: Exercise from 3.57. — compare with calculation of \(\pi_1(S^1) \). \(\Box \).
Example 1

\(p : \mathbb{R} \rightarrow S^1 \) is a covering map. Other covering maps of \(S^1 \) are given by \(p_n(z) = e^{2\pi i n} \) (viewing \(S^1 \subset \mathbb{C} \)).

\((p_n)_* : \pi_1(S^1, 1) \rightarrow \pi_1(S^1, 1)\) is given by \((p_n)_*([\gamma_n]) = [\gamma_n]\) when \(\gamma_n(t) = e^{2\pi i nt}, t \in [0, 1] \). That is, w.r.t. \(\pi_1(S^1, 1) \cong \mathbb{Z} \), we have \((p_n)_*([1]) = n \forall n \in \mathbb{Z} \).

2) \(X = \bigwedge_{a}^{\infty} \bigvee_{a}^{\infty} \) is a wedge of \(\mathbb{Z} \) circles.

The following graphs are all covering spaces of \(X \) with covering map that sends a-edges, b-edges homeomorphically onto a-edge/b-edge:

(i)
(ii)
(iii)
(iv)
(v)
(vi)

Z \times \mathbb{R} \sqcup \mathbb{R} \times Z

Infinite regular 4-valent tree