Open problem. Does there exist K a knot with $V_K(t) = 1$?

$V_K(t)$ is not a complete invariant; $\exists K \neq K'$ s.t. $V_K(t) = V_{K'}(t)$

constructed from mutation as follows.

Let D be a diagram for L and suppose \exists a disk Δ in projection plane with boundary circle meeting D in 4 points.

![Diagram](image)

Kinoshita-Terasaka knot

Conway knot. [May need to change orientation in strands Δ]

Proposition II.12: If L' is obtained from L by mutation, then $V_L(t) = V_{L'}(t)$.

Proof sketch: Using Prop II.9, express $V_L(t)$ as $\mathbb{Z}t^m, t^n$-linear combination of polynomials $V_{L_1}(t), \ldots, V_{L_r}(t)$ s.t. each $V_{L_i}(t)$ in Δ looks like

possibly together with some disjoint circles.

This is achieved by iteratively changing crossings and resolving crossings within Δ. Now check that if we do the same to L', get L'_1, \ldots, L'_r with $\text{and applying Prop II.9, } L_i = L'_i$, $V_{L_i}(t)$ same linear combination of
$V_L(t) \to V_L(t)$ — this is just because the crossing changes and resolutions commute with the rotation. Therefore $V_L(t) = V_L(t)$.

Exercise II. 14. Check this for the Kishino-Terasaka knot and Conway knot.

Applications 8 | Jones polynomial —

Define: Given a link L, the crossing number of L is the min.
$\#$ of crossings in any diagram, write $C(L) = \text{crossing number of } L$. Clearly, $C(L)$ is a link invariant, and $C(L) = 0$ iff $L = \text{unknot}$. Great invariant, except generally impossible to compute.

Define: The diagram D of a link L is called alternating if the crossings along any component of L alternate over/under starting at any point.

Observe that for any projection one can choose crossings so that diagram becomes alternating. To see this, checkboard color diagram, then choose crossings so that \ast occurs at each crossing (instead of $\ast\star\ast\star$).

Exercise II.15. Check that resulting diagram is alternating.
An alternating diagram is "the opposite" behaviour to the unknot construction of always going under. One might expect/hope that alternating knots are "very knotted", & they are, with some obvious exceptional examples:

\[\bigcirc \bigcirc \bigcirc \bigcirc \sim \emptyset \]

alternating

\[\bigcirc \bigcirc \bigcirc \bigcirc \sim \bigcirc \bigcirc \bigcirc \bigcirc \]

alternating

Can always add RI move (or reflection) and keep alternating property.

A crossing like this is called a nugatory crossing.

The rest of diagram lies in boxes.

Defn A diagram is called reduced if there are no nugatory crossings.

Theorem II.13 If \(L \) is a link with a reduced alternating diagram with \(n \) crossings, then \(c(L) = n \).
This theorem (proven by Kauffman, Murasugi, Thistlethwaite) answered an inherent question posed in late 1980's!

Try to prove it without Jones polynomial!

Before proof, need some preliminary lemmas.

Recall a state S of a diagram D is a choice of $A \& \bar{A}$ resolution of each crossing. Number the crossings $1, \ldots, n$. Since $R-A^{-1}$, can view S as a map $S: \{1, \ldots, n\} \rightarrow \{\pm 1\}$, so that the resolution of ith crossing determined by S is $A^{S(i)}$. Recall $|S| = \# \text{ components}$ after doing all resolutions.

Proposition II.3 says

$$<0> = \sum_{S} (A^{-1} (-A^{2} - A^{-2})^{n} - 1) = \sum_{S} <\text{DIS}>(-A^{2} - A^{-2})^{1 |S| - 1}$$

Let S_{+}, S_{-} be "constant" states—all A-resolutions \forall all A^{-1}-resolutions, respectively.

So $S_{\pm}(i) = \pm 1 \forall i$.

Define say D is adequate if $|S_{+}| > |S|$ \forall states S with $\sum S(i) = n - 2$ (so, a state with just one A^{-1} resolution).

Similarly, D is inadequate if $|S_{-}| > |S|$ \forall states S with $\sum S(i) = 2 - n$. D is adequate if \forall both.

Lemma II.14 A reduced alternating diagram D adequate.

proof: 1^{st} observe that D is adequate iff each component of D is adequate, so assume D is connected.
Now, when is a diagram adequate? To understand this, first do all resolutions for S^4. Then you want to check whether switching any single resolution will result in more or fewer components — note: it either goes up or down, it can't stay the same.

Now, checkerboard color diagram, observe that changing colors if necessary, every black region looks like this. [Could also have "outside" all black]

So, all A-resolution result in circles that bound black regions. How can switching a resolution result in more components?
region can "bump onto itself".

this means we have a nugatory crossing, and this
contradicts assumption D is reduced. So, D is inadequate.

Similar argument shows D is inadequate. □

Exercise II.10 Prove that the pretzel knot diagrams
\[P(p_1, p_2, q_1, \ldots, q_s) \] are adequate if \(p_i \geq 2, q_i \leq -2, \)
\(r \geq 2, s \geq 2 \)

\[P(a_1, \ldots, a_n) \]

Exercise II.17 For what values of \(\{a_1, \ldots, a_n\} \) is this
a knot?