3. A large Fermat code

From theorem 2.6 we know that the Fermat curve of degree nine is maximal over F_{64}, in fact it is a Hermite curve and there are 513 rational points. After determining rational points over some extensions of F_2 (prop.3.3), we may define a series of codes. Lenght and dimension of the codes follow immediately (prop.3.5). For one of the codes (def.3.6) we determine the minimum distance. The code appears to be of type $[513,485,15]$ (th.3.15), so the minimum distance is 14 above the design minimum distance.

3.1 Fermat curve. Let X/F_2^{alg} denote the Fermat curve of degree nine, defined by $F(x,y,z) = x^9 + y^9 + z^9 = 0$. For the genus g of X we have (prop.1.6)
\[
g = \binom{8}{2} = 28
\]

Let L,K be as in def.1.1, then with the adjunction formula (prop.1.7)
\[
K \sim 6L
\]

Finally let σ denote the Frobenius on X, i.e.
\[
\sigma P = (x^2, y^2, z^2) \quad \text{for} \quad P = (x,y,z)
\]

3.2 Remark. The fields F_4, F_8, ..., F_{64} may be interpreted as extensions of F_2 as follows

\[
\begin{align*}
F_4 &= F_2(\alpha^{21}) \equiv F_2(X)/(X^2+X+1) \quad , \alpha^{21} \rightarrow X \\
F_8 &= F_2(\alpha^{27}) \equiv F_2(X)/(X^3+X+1) \quad , \alpha^{27} \rightarrow X \\
F_{16} &= F_2(\gamma) \equiv F_2(X)/(X^4+X+1) \quad , \gamma \rightarrow X \\
F_{32} &= F_2(\beta) \equiv F_2(X)/(X^5+X^2+1) \quad , \beta \rightarrow X \\
F_{64} &= F_2(\alpha) \equiv F_2(X)/(X^6+X+1) \quad , \alpha \rightarrow X
\end{align*}
\]

With this choise F_{64} is an extension of both F_4 and F_8. (One verifies immediately that the polynomials involved are irreducible and that the first two isomorphisms agree with the last one)

3.3 Proposition. Let N be the 9-roots of unity in F_{64}, $N = \{1, \alpha^7, \ldots, \alpha^{56}\}$, and σ the Frobenius as in def.3.1.
For the fields of rem. 3.2 the rational points on X are given by

\[
\begin{align*}
F_2 & \quad \{ \tau \,(0:1:1) \mid \tau \in S_3 \} =: A \\
F_4 & \quad A \cup \{ \tau \,(0:1:\alpha^{21}) \mid \tau \in S_3 \} \\
F_8 & \quad A \cup \{ \tau \,(1:\alpha^{27}:\alpha^{18}) \mid \tau \in S_3 \} \\
F_{16} & \quad A \cup \{ \tau \,(0:1:\gamma^6) \mid \tau \in S_3 \} \\
F_{32} & \quad A \cup \{ \sigma^i \tau \,(1:\beta:\beta^{19}) \mid \tau \in S_3, i=0,1,\ldots,4 \} \\
F_{64} & \quad \{ \tau \,(0:1:\mu) \mid \tau \in S_3, \mu \in \mathbb{N} \} \cup \\
& \quad \{ (1:1:y:vz) \mid 1+y+9z=0, y,z \in F_8^+, \mu, v \in \mathbb{N} \}
\end{align*}
\]

For their number we obtain

\[
\begin{array}{cccccccc}
k & F_2 & F_4 & F_8 & F_{16} & F_{32} & F_{64} \\
\#X(k) & 3 & 9 & 9 & 9 & 33 & 513
\end{array}
\]

In particular X is maximal over F_{64}.

Proof. All points given are on the curve and their number agree with the table. We show there are no more 0.

F_2, F_8 and F_{32} do not contain a primitive third root of unity. Therefore the map $x \rightarrow x^9$ is a bijection on these fields, yielding $\#X(k)=\#P^1(k)$, as in the table.

For F_4 and F_{16} one has

\[
\begin{align*}
x \in F_4 & \quad \Rightarrow \quad x^9 \in \{0,1\} \\
x \in F_{16} & \quad \Rightarrow \quad x^9 \in \{0,1,\gamma^3,\gamma^6,\gamma^9,\gamma^{12}\} =: D
\end{align*}
\]

from which the case F_4 follows immediately. As for F_{16}, points $(x:y:z)$ with $xyz=0$, are just the points over F_4. To see that there are no new points, i.e. points with $xyz \neq 0$, it is sufficient to note $\gamma^3+1=\gamma^1$ (rem. 3.2) and $\gamma \not\in D$.

F_{64} contains a primitive ninth root of unity and we find rational points by adjugating them to points over F_2 (obtaining 3×9 points) and the new points over F_8 (obtaining 6×81 points). Since their number equal the Weil upper bound, it is sufficient to verify that the points thus obtained are all different. This being a trivial verification, the proposition is proved.
3.4 Divisors on X. Write $P_1, P_2, \ldots, P_{513}$ for the points over F_{64}, say with $P_1=(0:1:1)$, $P_2=(1:0:1)$, $P_3=(1:1:0)$. With $(1: \beta : \beta^{19}) \in X(F_{32})$ and σ the Frobenius we define $B_{i+1} = \sigma^i (1: \beta : \beta^{19})$, $i=0,1,\ldots,4$. Finally let D, B and G be divisors over F_2 on X, given by

\[
D = P_1 + P_2 + \ldots + P_{513} \\
B = B_1 + B_2 + B_3 + B_4 + B_5 \\
G = mB
\]

$11 \leq m \leq 102$

3.5 Proposition. The parameters of a Goppa code $C^*(D,G)$, D and G as in 3.4, satisfy

\[
\begin{align*}
n &= 513, \quad \text{length} \\
k &= 540 - m, \quad \text{dimension} \\
d^* &= 5m - 54, \quad \text{design minimum distance} \\
d^* &\leq d \leq d^* + 28, \quad \text{minimum distance}
\end{align*}
\]

Proof. We may use prop.1.11 to find

\[
\begin{align*}
n &= \deg(D) \\
k &= \deg(D-G) + g -1 \\
d^* &= \deg(G-K) \\
d^* &\leq d \leq d^* + g
\end{align*}
\]

Substitution of $\deg(D)=54, \deg(G)=5m, \deg(K)=54$ and $g=28$ yields the result \diamondsuit.

3.6 Definition. With D, B the divisors of 3.4 and referring to the definition of a Goppa code (1.9) we define the code C as the Goppa code $C^*(D,11B)$.

After proposition 3.5 it remains to determine the minimum distance of C. In preparation for theorem 3.15 we deduce some equivalences of divisors on X. The following lemma gives us the divisor, corresponding to a tangent at X.
3.7 Lemma. Let X/F_p^{a1g} be a Hermitian curve of degree $q+1$. On X consider

$\phi : (x:y:z) \rightarrow (x^q:y^q:z^q)$

For any $P \in X(F_p^{a1g})$ the divisor L_P, cut out by the tangent at P is given by

$L_P = qP + q^2P$

Proof. Say $P = (x_0:y_0:z_0)$. Points of L_P are given by

\[
\begin{cases}
 x^{q+1} + y^{q+1} + z^{q+1} = 0 \\
 x_0^{q}x + y_0^{q}y + z_0^{q}z = 0
\end{cases}
\]

Suppose $q^2P = (x_1:y_1:z_1) \neq P$. Since $q^2P \in L_P$ points on L_P are of the form

\[
(x_0 + \lambda(x_1-x_0) : y_0 + \lambda(y_1-y_0) : z_0 + \lambda(z_1-z_0))
\]

Substitution in $x^{q+1} + y^{q+1} + z^{q+1} = 0$ yields $\lambda = 0$ (qx), $\lambda = 1$ ($1x$). For $q^2P = P$ one verifies $L_P = (q+1)P$.

3.8 Corollary. On X we have the equivalence of divisors (B as in 3.4, L as in def.1.1)

$9B \sim 5L$

Proof. We have

$5L \sim L_{B_1} + L_{B_2} + L_{B_3} + L_{B_4} + L_{B_5}$

and by the lemma

$L_{B_1} + L_{B_2} + L_{B_3} + L_{B_4} + L_{B_5} = 9B$

3.9 Lemma.

(a) The equation $F_2(x,y,z) := xy + xz + y^2 = 0$ determines the unique conic through $B_1,B_2,...,B_5$.

(b) There is a unique divisor E on X, satisfying

$B + E \sim 2L \quad \& \quad E \geq 0$

(c) The divisor E from (b) is a divisor over F_2 of degree 13, with one point of degree one and two points of degree six.
Proof. (a) F_2 is the unique solution of a system of linear equations. Unicity also follows from Bezout (th.1.8). (b) is consequence of (a).
(c) With (a,b), points of $B + E$ are the solutions of
\[
\begin{cases}
 x^9 + y^9 + z^9 = 0 \\
 xy + xz + y^2 = 0
\end{cases}
\]
or, since a solution $(x:y:z)$ satisfies $x \neq 0$
\[
\begin{cases}
 1 + y^9 + y^{18} + y^{17} + y^{10} + y^9 = 0 \\
 (x:y:z) = (1:y:y+y^2)
\end{cases}
\]
(3.1)
and it suffices to give the factorisation of (3.1) over F_2
\[
y^{18} + y^{17} + y^{10} + 1 = (y^6 + y^5 + y^4 + y + 1)(y^6 + y^5 + 1) \times (y^5 + y^2 + 1)(y+1)
\]

3.10 Lemma.
(a) The equation $F_3(x,y,z) := x^2z + xyz + (y+z)^3 = 0$ determines the unique third degree curve, that touches X at $B_1, B_2, ..., B_5$.
(b) There is a unique divisor E' on X, satisfying
\[
2B + E' \sim 3L \quad \wedge \quad E' \geq 0
\]
(c) The divisor E' from (b) is a divisor over F_2 of degree 17, with three points of degree one ($P_1 + 2P_2$) and a term that is either a point of degree 14 or the sum of two points of degree 7.

Proof.
(a) We look for a F of the form
\[
F(x,y,z) = a_0x^3 + a_1x^2y + ... + a_9z^3
\]
From the proof of lem.3.9(c) we see
\[
[B_1, B_2, ..., B_5] = \{ (1:y:y+y^2) \} y^5 + y^2 + 1 = 0
\]
with $y^5 + y^2 + 1$ irreducible over F_2. Hence F is of the form
\[
F(1,y,y+y^2) = (b_0y+b_1)(y^5 + y^2 + 1)
\]
\[b_0, b_1 \in F_2^{\text{alg}}\]
Comparing coefficients of powers of y in the last equation leads to seven
equations in twelve unknowns $(a_0,a_1,\ldots,a_9,b_0,b_1)$. One obtains easily, with F_2 as
in lem.3.9(a),

$$F(x,y,z) = c_0F_2x + c_1F_2y + c_2F_2z + c_3(x^3+xyz+yz^2) +
+ c_4(x^2+y^2z+yz^2+z^3)$$

Let X' be the curve determined by $F(x,y,z)=0$ and for a non-singular point P of
X' let L'_P be the tangent of P at X'. With lem.3.7 it suffices to choose
c_0,c_1,\ldots,c_4 such that $\varphi^2P\in L'_P$ for $P\in \{B_1,B_2,\ldots,B_5\}$. As a unique solution we
obtain $F = x^2z + xyz + (y+z)^3$. (b) follows from (a)
(c) With (a,b), points of $2B + E'$ are the solutions of

$$\begin{cases}
\begin{alignat*}{2}
x^9 + y^9 + z^9 &= 0 \quad (3.2) \\
x^2z + xyz + (y+z)^3 &= 0 \quad (3.3)
\end{alignat*}
\end{cases}$$

remark (i). It suffices to show that all solutions of degree ≤ 6 (over F_2) are given
by $2B+P_1+2P_2$. For the other solutions (14 in number by Bezout's theorem)
then only two possibilities remain to be divided into Galoits orbits: one of length
14 or two of length 7.

remark (ii). Since (3.2) contains no new point of F_{16} over F_4 by prop.3.3, no
solution of degree 4 exists. Therefore we may solve (x,y) over F_{32} (solutions of
degree 1,5) and over F_{64} (solutions of degree 1,2,3,6).

remark (iii). $z\neq 0$ for a solution $(x:y:z)$ of (x,y), since $z=0 \Rightarrow y,z=0 \Rightarrow x,y,z=0$.

First suppose $y=0$, then by (iii)

$$(3.3) \quad \Rightarrow \quad (x+z)^2z=0 \quad \Rightarrow \quad x=z$$

or

$$(x:y:z) = (1:0:1) = P_2 \quad (2x)$$

For $y\neq 0$, say $y=1$, we have

$$(3.3) \quad \Leftrightarrow \quad x(x+1) = (z+1)^3z^{-1}$$

Note that $z\neq 0$ by (iii). For $x,z \in F_{32}$ or $x,z \in F_{64}$ satisfying the last equation
one verifies if $(x:1:z)$ is a point on X. This is straightforward and, using some
tricky reductions, can in fact be done by hand, leading to the solutions

$P_1 \; (1x) \; \text{and} \; B_1,B_2,\ldots,B_5 \; (2x)$

By remarks (ii) and (i) this proofs the lemma.
3.11 Lemma. The equation \(y(x+y+z) = 0 \) determines a divisor over \(\mathbb{F}_2 \), say \(L_y(x+y+z) \), on the curve \(X \). With the notation of 3.4 we have

\[
L_y(x+y+z) \sim P_1 + 2P_2 + P_{i1} + P_{i2} + \ldots + P_{i15}
\]

with the \(P_{ik}, k=1,2,\ldots,15 \), pairwise different.

Proof. We consider the contributions of the irreducible components (\(N \) as defined in 3.2)

\[
y = 0 \sum_{\mu \in N} (1:0:1:1) \sum_{P \in X(\mathbb{F}_8)}\]

since for \(P=(x:y:z) \in X(\mathbb{F}_8) : x+y+z = (x^9+y^9+z^9)^4 = 0 \) and \(\#X(\mathbb{F}_8) = 9 \). The statement follows at once. In particular \(P \in L_y(x+y+z) \Rightarrow P \in X(\mathbb{F}_64) \). See also convention 3.4.

To determine the minimum distance we use prop.1.11:

3.12 Remark. For a Goppa code \(C^*(D,G) \), with \(D,G \) divisors on a curve \(X \), the minimum distance equals the smallest \(d \) for which there is a relation in \(\text{Div}(X) \) of the form

\[
G + Q \sim K + P_{i1} + P_{i2} + \ldots + P_{id}
\]

with \(Q \geq 0 \), \(K \) as in def.1.1 and the \(P_{ik} \in D, k=1,2,\ldots,d \), pairwise different.

3.13. Proposition. Let \(d \) be the minimum distance of the code \(C=C^*(D,11B) \). Then \(d \leq 15 \).
Proof. With the previous proposition it suffices to give a relation

\[11B + Q \sim K + P_{11} + P_{12} + \ldots + P_{115} \]

We have

\[
\begin{align*}
6L & \sim K \quad \text{(rem.3.1)} \\
9B & \sim 5L \quad \text{(cor.3.8)} \\
2B + E & \sim 3L \quad E \geq 0 \quad \text{(lem.3.10)} \\
2L & \sim P_1 + 2P_2 + P_{11} + P_{12} + \ldots + P_{115} \quad \text{(lem.3.11)}
\end{align*}
\]

These yield the required relation with \(Q = E - P_1 - 2P_2 \geq 0 \) by lem. 3.10. and the \(P_{ik} \in D, k=1,2,\ldots,15 \), pairwise different by lem.3.11 \(\Box \).

3.14.Lemma. For the code \(C \) suppose a relation (3.4), with \(d \leq 14 \), exists. Then there is a relation

\[2B + Q + P' \sim L + P + P' \sim 3L \]

with \(Q, P' \geq 0 \), \(D \geq 0 \) and \(\deg(P') \geq 4 \).

Proof. We assume a relation of the following form

\[11B + Q \sim K + P \]

\(P = P_{11} + P_{12} + \ldots + P_{1d}, d \leq 14 \). Using \(9B \sim 5L \) (cor.3.8) and \(K \sim 6L \) (rem.3.1) we obtain

\[2B + Q \sim L + P \]

Through \(P \) we may choose a curve of degree 4, thus obtaining a \(P \in \text{Div}_{\geq 0}(X) \) satisfying \(P + P \sim 4L \). Then
\[2B + Q + P^- \sim L + P + P^- \sim 5L \]

Since \(2B + Q + P^- \geq 0 \) we conclude that there is also a curve of degree 5 through \(P^- \). \(\text{Deg}(P^-)=36-\text{deg}(P)\geq22 \), hence the two curves (of degree 4 and 5) have a component in common, say of degree \(m \).

Noting that \(2B+Q \cap P = \emptyset \), we obtain a \(P^* \in \text{Div}_{\geq0}(X), P^* \not\subseteq P^- \), with

\[2B + Q + P^* \sim L + P + P^* \sim (5-m)L \]

\((m=1) \) We find two curves (of degree 3 and 4) through \(P^* \). Since in this case \(\text{deg}(P^*)=27-\text{deg}(P)\geq13 \), Bezout implies that the two curves have a component in common. Case \((m=1) \) thus reduces to \((m\geq2) \)

\((m=2) \) We obtain the required relation. Indeed \(\text{deg}(P^*)=18-\text{deg}(P)\geq4 \)

\((m=3) \) We find \(2B+Q^\sim 2L \), \(Q\geq0 \). A contradiction with lem.4.x.

\((m=4) \) The curve of degree 5 intersects \(X \) at \(2B+P+P^* \), but then \(\text{deg}(2B+P+P^*)=46\geq45 \), a contradiction \(\emptyset \).

3.15 Theorem. The code \(C \), defined in 3.6, is of type \([513,485,15]\).

Proof. With propositions 3.5 en 3.13 the code \(C \) is of type \([513,485,1\leq d\leq15]\). We now assume \(d<15 \)

Then the lemma applies and we have the equivalences

\[2B + Q + P' \sim L + P + P' \sim 3L \]

with \(Q,P\geq0 \), \(D\geq P\geq0 \) and \(\text{deg}(P')\geq4 \). \(P' \) can be chosen such that \(Q \cap P = \emptyset \). Since \(2B \cap P = \emptyset \) also we conclude, by lemma 3.10, that the third degree curve through \(2B + Q + P' \) and the second degree curve through \(P + P' \) have no common component. Bezout then gives \(\text{deg}(P')\leq6 \).

Consider

\[2L \sim P + P' \sim \sigma^{6}P + \sigma^{6}P' = P + \sigma^{6}P' \]
Since \(\deg(P) = 18 - \deg(P') \geq 12 \), the two curves through \(P + P' \) and \(P + \sigma^6P' \) are equal (even with both curves reducible and one component in common, three common points remain for the other components; both are lines and thus fully determined by these three points), hence \(\sigma^6P' = P' \). However, lemma 3.10 and \(\deg(P') \geq 4 \) imply that \(P' \) contains a point with coordinates of degree 7 or 14 (over \(F_2 \)), so \(\sigma^6P' \neq P' \), a contradiction. We conclude \(d = 15 \) \(\diamond \).