1) Let D be a domain in \mathbb{C} and (f_n) be a sequence of uniformly bounded analytic functions on D. Let S be a subset of D such that S has a limit point in D, and (f_n) converges pointwise on S. Prove that (f_n) is uniformly Cauchy on compact subsets of D.

2) Let \mathfrak{F} be a set of analytic functions on D. Show that \mathfrak{F} is relatively compact in $A(D)$ if and only if $\exists M_n \geq 0$ with $\limsup_{n} \sqrt{M_n} \leq 1$ and $\forall f \in \mathfrak{F}, \forall N \geq 0$, \[
\left| \frac{f^{(n)}(0)}{n!} \right| \leq M_n.
\]

3) Construct explicitly a meromorphic function on \mathbb{C} with poles exactly at $in, n = 1, 2, 3, \ldots$, and corresponding principal part \[
\frac{n^{5/2}}{(z-in)^2}.
\]

4) Let $D = \{ z \in \mathbb{C} : 0 < \text{Im } z < \pi \}$ and let \mathfrak{F} denote the set of conformal mappings $f : D \to \mathbb{D}$ with $f \left(\frac{i\pi}{2} \right) = 0$.
 (i) Construct explicitly a function $h \in \mathfrak{F}$.
 (ii) Determine the set of all possible values of $f' \left(\frac{i\pi}{2} \right)$ for $f \in \mathfrak{F}$ and justify your answer.

5) Let $G = \left\{ z \in \mathbb{C} : \frac{\pi}{4} < \text{Arg} \frac{1+z}{1-z} < \frac{\pi}{2} \right\}$.
 (i) Find the equation of the boundary of G in x, y coordinates.
 (ii) Find a conformal mapping of G onto the open disk \mathbb{D}.

6) Suppose that F is analytic on a convex domain Ω.
 (i) Suppose that $F'(z) \neq 0$ for all $z \in \Omega$. Give an example to show that F need not be one-to-one.
 (ii) Suppose, in addition, that $\text{Re } F'(z) > 0$ for all $z \in \Omega$. Prove that F is one-to-one.

7) Show that every conformal map of the upper half plane $\mathbb{H} = \{ z \in \mathbb{C} : \text{Im } z > 0 \}$ is of the form \[
z \mapsto \frac{az + b}{cz + d}, \quad a, b, c, d \in \mathbb{R}, \quad ad - bc = 1.
\]

8) (i) Find explicitly a conformal mapping of the horizontal strip $\{ z \in \mathbb{C} : 0 < \text{Im } z < 1 \}$ onto \mathbb{D}.

(ii) Find a conformal mapping of \(\{ z \in \mathbb{D} : \text{Im} \, z > 0 \} \) onto \(\mathbb{D} \).

9) (i) Find explicitly a conformal mapping from \(\mathbb{D} \setminus [0, 1) \) onto \(\mathbb{D} \).
 (ii) Find an analytic mapping from \(\mathbb{D} \setminus [1/2, 1) \) onto \(\mathbb{D} \).

10) (i) Find a conformal mapping \(f \) from
 \[
 \Omega = \{ z \in \mathbb{C} : |z + i| < \sqrt{2}, |z - i| < \sqrt{2} \}
 \]
 onto \(\mathbb{D} \) such that \(f(0) = 0 \).
 (ii) Is there a conformal mapping \(g : \Omega \to \mathbb{D} \) such that \(g(0) = 0 \) and \(g(1/2) = 9/10 \)? Justify your answer.