Examples of dynamical systems: the doubling map, coding and conjugacies.

Let \(T(x) = \begin{cases} 2x & \text{if } 0 \leq x < \frac{1}{2} \\ 2x-1 & \text{if } \frac{1}{2} \leq x < 1 \end{cases} \)

If we view \((0,1) \) as \(\mathbb{R}/\mathbb{Z} \) or \(S^1 \), we notice that the map \(T \) is well defined: \(T(0) = T(1) = 0 \). In multiplicative notation, \(T(e^{2\pi i \theta}) = e^{2\pi i 2\theta} = e^{2\pi i 6\theta/2} \).

We can see that \(T \) is continuous on \(S^1 \) and \(T \) is not invertible.

\[T^{-1}(y) = \left\{ y, \frac{y}{2} + \frac{1}{2} \right\}. \]

Moreover: \(T \) is expanding: if \(d(x, y) < \frac{1}{4} \)

Then \(d(T(x), T(y)) = 2d(x, y) \).

Questions: Are there periodic points? Are there points with dense orbit?
To answer these questions we use general facts from the topological side of Ergodic theory.

Let \(T: X \to X \) and \(S: Y \to Y \) two maps.

A conjugacy between \(T \) and \(S \) is an invertible map \(\psi: Y \to X \) such that \(\psi \circ S = T \circ \psi \).

In other words, the diagram commutes:

\[
\begin{array}{ccc}
Y & \xrightarrow{S} & Y \\
\downarrow{\psi} & & \downarrow{\psi} \\
X & \xrightarrow{T} & X
\end{array}
\]

Lemma 1.3 Let \(T \) and \(S \) be conjugated by \(\psi \). Then \(y \) is periodic of period \(n \) for \(S \) if and only if \(\psi(y) \) is periodic of period \(n \) for \(T \).

Proof

One can check (by induction) that if \(\psi \circ S = T \circ \psi \), then \(\psi \circ S^n = T^n \circ \psi \). If \(\psi \) is invertible, then \(S^n = \psi \circ T^n \circ \psi^{-1} \).

Let \(S^n(y) = y \), then \(T^n(\psi(y)) = \psi(S^n(y)) = \psi(y) \).

Conversely, let \(T^n(\psi(y)) = \psi(y) \). Then

\[
S^n(y) = \psi^{-1}(T^n(\psi(y))) = \psi^{-1}(\psi(y)) = y
\]
Def: a semi-conjugacy between T and S is a surjective map $\psi: Y \to X$ such that $\psi \circ S = T \circ \psi$.

We say that $S: Y \to Y$ is an extension of $T: X \to X$ and that $T: X \to X$ is a factor of $S: Y \to Y$.

Lemmata. Let T and S be semi-conjugated by ψ.

If y is a periodic point of period n for S, then $\psi(y)$ is a periodic point of period n for T.

The converse statement is in general not true.

Back to the doubling map $T: [0,1) \to [0,1)$, $T(x) = 2x \mod 1$. Consider the binary expansion of $x \in [0,1)$:

$$x = \sum_{i=1}^{\infty} \frac{x_i}{2^i}, \quad x_i \in \{0,1\}.$$

Then $T(x) = \sum_{i=1}^{\infty} \frac{2x_i}{2^{i+1}} \mod 1 = \sum_{i=2}^{\infty} \frac{x_i}{2^{i-1}} = \sum_{i=1}^{\infty} \frac{x_{i+1}}{2^i}$.

In other words, T shifts the digits by 1.

Let $\Sigma^+ = \{0,1\}^\infty$ and $a = (a_i)_{i \geq 1} \in \Sigma^+$.

The shift map is $\sigma: \Sigma^+ \to \Sigma^+$, $\sigma(a) = b$ where $b = (b_i)_{i \geq 1}$ and $b_i = a_{i+1}$.

Notice that σ is not invertible.
Let \(\psi : \Sigma^+ \rightarrow [0,1] \) be the map
\[
\psi((a_i)_{i \geq 1}) = \sum_{i=1}^{\infty} \frac{a_i}{2^i} \in [0,1].
\]
Notice that \(\psi \) is well defined and onto, but not 1-1.

Proposition 1.4

\(\psi \) is a semi-conjugacy between \(\sigma : \Sigma^+ \rightarrow \Sigma^+ \) and the doubling map \(T : \mathbb{R}/\mathbb{Z} \rightarrow \mathbb{R}/\mathbb{Z} \).

Proof: Since \(\psi \) is onto, we need to show that

\[
\Sigma^+ \xrightarrow{T} \Sigma^+ \text{ commutes.}
\]

\[
\begin{array}{c}
\downarrow \\
\downarrow \\
\downarrow
\end{array}
\begin{array}{c}
\psi \\
\psi \\
\psi
\end{array}
\begin{array}{c}
[0,1] \\
[0,1] \\
[0,1]
\end{array}
\begin{array}{c}
= \sum_{i=1}^{\infty} \frac{a_i}{2^i} \\
= \sum_{i=1}^{\infty} \frac{b_i}{2^i}
\end{array}
\]

In fact, \(\psi(\sigma((a_i)_{i \geq 1})) = \psi((b_i)_{i \geq 1}) = \sum_{i=1}^{\infty} \frac{b_i}{2^i} = \sum_{i=1}^{\infty} \frac{a_i+1}{2^i} \)

and
\[
T(\psi((a_i)_{i \geq 1})) = T\left(\sum_{i=1}^{\infty} \frac{a_i}{2^i}\right) = \sum_{i=1}^{\infty} \frac{a_i}{2^{i+1}} \text{ mod 1} = \sum_{i=1}^{\infty} \frac{a_{i+1}}{2^{i+1}}.
\]

Now we use periodic points for \(\sigma : \Sigma^+ \rightarrow \Sigma^+ \) to produce periodic points for \(T \). (Via Lemma 1.3')
Theorem 1.5

(a) \(T : [0,1] \to [0,1] \)
\[\text{Tax} = 2x \mod 1 \]

has \(2^n - 1 \) periodic points of period \(n \).

(b) The set of periodic points is dense in \([0,1]\).

Proof:

(a) By Proposition 1.4, periodic points of period \(n \) for \(\phi : \Sigma^+ \to \Sigma^+ \) are mapped to periodic points of period \(n \) for \(T \).

What are periodic points of period \(n \) for \(\Sigma^+ \)?

prescribed by specifying \(n \) binary digits \(\Rightarrow \)

\(2^n \) choices. However, \(\phi([0, \ldots, 0, \ldots]) = 0 = 1 = \phi([1, 1, \ldots, 1, \ldots]) \mod 1 \)

and these are the only two periodic points that give the same image under \(\phi \).

(b) Exercise

Symbolic coding for the doubling map.

Consider the partition \(A_0 \sqcup A_1 \) of \([0,1]\):

\(A_0 = [0, \frac{1}{2}) \), \(A_1 = (\frac{1}{2}, 1) \)

Define \(\phi : [0,1] \to \Sigma^+ \) \(\phi(x) = (a_i)_{i \geq 0} \)

where \(a_i = \begin{cases} 0 & \text{if } T^i(x) \in A_0 \\ 1 & \text{if } T^i(x) \in A_1 \end{cases} \)
the sequence \((a_i)_{i=0}^\infty\) is the itinerary of \(\Omega_T^+(x)\) w.r.t. the partition \(\{A_0, A_1, \ldots\}\):

\[x \in A_{a_0}, \ T(x) \in A_{a_1}, \ T^2(x) \in A_{a_2}, \ldots.\]

Proposition 1.6 If \((a_i)_{i=0}^\infty\) is the itinerary of \(x \in [0, 1]\)
then \(x = \sum_{i=1}^{\infty} \frac{a_i - 1}{2^i}\), i.e. \((a_i)_{i=0}^\infty\) is one of the two binary expansions of \(x\).

Proof

If \(a_0 = 0\), then \(0 \leq x < \frac{1}{2}\)
If \(a_0 = 1\) then \(\frac{1}{2} \leq x \leq 1\)

Say we want to look at \(k\)th entry \(a_k\).

If \(x_1, x_2, \ldots, x_k, \ldots\) are \(n\) digits of binary expansion
of \(x\), then the digits of \(T^k(x)\) are \(x_{k+1}, x_{k+2}, \ldots\)
and the itinerary of \(T^k(x)\) is \(a_k, a_{k+1}, a_{k+2}, \ldots\)
then reason as above

\(a_k = 0 \Rightarrow T^k(x) \in A_0\)
\(a_k = 1 \Rightarrow T^k(x) \in A_1\)

Corollary \(\psi\) is a right inverse for \(\psi \circ \phi: \mathbb{R}_2 \to \mathbb{R}_2\) in the identity map
Now fix \(a_0, a_1, \ldots, a_n \in \mathbb{Z}_0 \mathbb{R} \). Set

\[
I(a_0, a_1, \ldots, a_n) = \{ x \in (0, 1) \mid \phi(x) = (a_0, a_1, \ldots, a_n, \ldots) \} = \{ x \in (0, 1) \mid T^k(x) \in P_{a_k} \text{ for } 0 \leq k \leq n \}\]

Notice that

\[I(a_0, a_1, \ldots, a_n) = P_{a_n} \cap T^{-1}(P_{a_{n-1}}) \cap \cdots \cap T^{-n}(P_{a_1}) = P_{a_0} \cap (0, 1). \]

Recall \(A_0 = [0, \frac{1}{2}) \), \(A_1 = (\frac{1}{2}, 1) \).

\[
T^{-1}(A_0) = [0, \frac{1}{4}) \cup [\frac{1}{2}, \frac{3}{4})
\]

\[
T^{-1}(A_1) = (\frac{1}{4}, \frac{1}{2}) \cup [\frac{3}{4}, 1)
\]

\[
I(0, 0) = [0, \frac{1}{4}), I(0, 1) = (\frac{1}{4}, \frac{1}{2}), I(1, 0) = (\frac{1}{2}, \frac{3}{4}) \), I(1, 1) = (\frac{3}{4}, 1).
\]

In general \(I(a_0, \ldots, a_n) \) is an interval of length \(2^{-(n+1)} \).

We have a partition

\[
\bigcup \{ I(a_0, a_1, \ldots, a_n) \mid (a_0, a_1, \ldots, a_n) \in \{0, 1\}^n \}
\]

and each \(I(a_0, \ldots, a_n) \) is of the form \([\frac{k}{2^{n+1}}, \frac{k+1}{2^{n+1}}) \) for \(0 \leq k < 2^{n+1} \).

Let's construct a dense subset for \(T \).
Theorem 1.7 Let $T(x) = 2x$ not 1 on $[0,1)$. There exists a point \tilde{x} s.t. $\mathcal{O}^+_{\tilde{x}}(\tilde{x})$ is dense in $[0,1)$.

Proof Enough to show that $\forall n \geq 1$, $\mathcal{O}^+_{\tilde{x}}(\tilde{x})$ visits all intervals of the form $I(a_0, a_1, \ldots, a_n)$.

In fact $\forall y \in [0,1)$, $\forall \varepsilon > 0$, take N large enough s.t. $2^{-N+1} \leq \varepsilon$ and take $I(a_0, \ldots, a_N) \ni y$.

If we showed that $\exists k \geq 0$ s.t. $T^k(\tilde{x}) \in I(a_0, \ldots, a_N)$, then $d(T^k(\tilde{x}), y) < 2^{-N+1} \leq \varepsilon \Rightarrow \mathcal{O}^+_{\tilde{x}}(\tilde{x})$ is dense.

Define

$$\left(\tilde{a}_i\right)_{i \geq 0} = \left(0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, \ldots\right)$$

- all possible words of length 1
- all possible words of length 2
- all possible words of length 3
- \ldots

To see that the orbit of $\tilde{x} = \psi\left(\left(\tilde{a}_i\right)_{i \geq 0}\right)$ visits $I(a_0, \ldots, a_n)$ first where the word a_0, \ldots, a_n appears in $\left(\tilde{a}_i\right)_{i \geq 0}$, i.e.

$$\tilde{a}_k = a_0, \quad \tilde{a}_{k+1} = a_1, \quad \ldots, \quad \tilde{a}_{k+n} = a_n$$

and $T^k(\tilde{x}) \in I(\tilde{a}_k, \ldots, \tilde{a}_{k+n}) = I(a_0, \ldots, a_n)$.
Remark: The map \(x \mapsto 3x \mod 1 \) is conjugated to the shift over \(\{0, 1, 2\} \mathbb{N} \) and the same construction holds in this case.

Same for \(x \mapsto mx \mod 1 \), \(m \in \mathbb{N} \) and the shift over \(\{0, \ldots, m-1\} \mathbb{N} \).

Barker's map as extension of doubly map.

\[X: [0, 1)^2 \to [0, 1)^2 \quad F: X \to X \]

\[F(x, y) = \begin{cases} (2x, y/2), & 0 \leq x < \frac{1}{2} \\ (2x-1, \frac{y+1}{2}), & \frac{1}{2} \leq x < 1 \end{cases} \]

Notice the stretching in the horizontal direction by factor 2 and the contraction in the vertical one by factor 2.

\(F \) is invertible:

\[F^{-1}(x, y) = \begin{cases} (\frac{x}{2}, 2y), & 0 \leq y < \frac{1}{2} \\ (\frac{x+1}{2}, 2y-1), & \frac{1}{2} \leq y < 1 \end{cases} \]
Proposition 1.8 Fix an invertible extension of the doubling map T

Proof. We already know F is invertible. Let $\pi : [0,1) \to \{0,1\}$ be the projection onto the 1st coordinate.

Claim: F and T are semi-conjugated by π:

$\pi : [0,1)^2 \to [0,1]^2$

$\pi \downarrow \quad \quad \downarrow \pi$

$[0,1) \to [0,1)$

In fact: $\pi(F(x,y)) = 2x \mod 1 = T(x) = T(\pi(x,y))$.

We already know that T is semi-conjugated to the shift $\sigma^+: \Sigma^+ \to \Sigma^+$, $\Sigma^+ = \{0,1\}^\mathbb{N}$.

Let's see that F is semi-conjugated to the two-sided shift $\sigma : \Sigma \to \Sigma$, $\Sigma = \{0,1\}^\mathbb{Z}$.

$a = (a_i)_{i \in \mathbb{Z}} \in \Sigma$

$\sigma(a) = b \quad , \quad b = (b_i)_{i \in \mathbb{Z}} \quad , \quad b_i = a_{i+1}$

[Notice that σ is invertible]

Let's use the idea of coding as before.

Let $A_0 = [0,\frac{1}{2}) \times [0,1)$, $A_1 = (\frac{1}{2},1) \times [0,1)$.
The bi-infinite itinerary of \((x,y)\) w.r.t. the partition
\([A_0, A_1]\) is the sequence
\((a_i)_{i \in \mathbb{Z}} \in \Sigma\) defined as
\[
 a_k = \begin{cases}
 0 & \text{if } F^k(x,y) \in A_0 \\
 1 & \text{if } F^k(x,y) \in A_1
 \end{cases}
\]

In particular if \(\ldots, a_{-2}, a_{-1}, a_0, a_1, a_2, \ldots\)
is the itinerary of \(\mathcal{O}_F((x,y))\), then
\[
F^k(x,y) \in A_{a_k} \quad \forall \ k \in \mathbb{Z}.
\]

Given \(m, n \in \mathbb{Z}\) and \(a_n \in \{0, 1\}\) for \(-m \leq k \leq n\),
\[
A_{-m,n}(a_{-m}, \ldots, a_n) = \big\{ (x,y) \in X : F^k(x,y) \in A_{a_k} \big\}
\]
for \(-m \leq k \leq n\).

Set of points in \(X\) whose itinerary between \(-m\) and \(n\)
agrees with \(a_{-m}, \ldots, a_n\).

Notice that
\[
A_{-m,n}(a_{-m}, \ldots, a_n) = \bigcap_{k=-m}^{n} F^{-k}(R_{a_k})
\]
Ex: $F^{-1}(A_0) = \quad$

$A_{0,1}(1,0) = A_1 \cap F^{-1}(A_0) = \quad$

In pencil

$R_{0,n}(a_0, a_1, \ldots, a_n) = I(a_0, \ldots, a_n) \times [0,1) = \quad$ (future)

$= \left[\frac{k}{2^{n+1}}, \frac{k+1}{2^{n+1}}\right) \times [0,1) = \quad$

for some $0 \leq k < 2^{n+1}$.

What about the points sharing the same itinerary in the past?

$F(A_0) = \quad$

$F^2(A_1) = F(\quad) = \quad$

and $A_{-2,-1}(0,1) = F^2(A_0) \cap F(A_1) = \quad$

In pencil

$A_{-n,-1}(a_n, \ldots, a_1)$ is a horizontal rectangle of the form
Theorem 1.9

The Baker map F is semi-conjugated to the full shift $\sigma: \Sigma \to \Sigma$ via

$\Psi: \Sigma \to [0,1)^2$,

$\Psi((a_i)_{i \in \mathbb{Z}}) = (x,y)$, where

$x = \sum_{i=1}^{\infty} \frac{a_i}{2^i}$, \quad $y = \sum_{i=1}^{\infty} \frac{a_{-i}}{2^i}$

["Future" $(a_i)_{i \geq 0}$ determines the binary expansion of x while the "past" $(a_i)_{i \leq 0}$ determines the binary expansion of $y"$]

Proof: Ψ is well defined and onto. Let us check that $\Psi_\sigma = F \Psi$:

$\Psi(\sigma((a_i)_{i \in \mathbb{Z}})) = \Psi((a_{i+1})_{i \in \mathbb{Z}}) = \left(\sum_{i=1}^{\infty} \frac{a_i}{2^i}, \sum_{i=1}^{\infty} \frac{a_{-i+1}}{2^i}\right)$
Note that if \(a_0(x) \) is the first entry of the itinerary of \(x \), then \(a_0(x) = \begin{cases} 0 & \text{if } (x,y) \in A_0 \\ 1 & \text{if } (x,y) \in A_1 \end{cases} \)

and therefore \(T(x) \)

\[
F(x,y) = \left(2x \mod 1, \frac{y + a_0(x)}{2} \right).
\]

This implies:

\[
F(\Phi((a_i)_{i \in \mathbb{Z}})) = F\left(\sum_{i=1}^{\infty} \frac{a_{i-1}}{2^i}, \sum_{i=1}^{\infty} \frac{a_i}{2^i} \right) = (T(\sum_{i=1}^{\infty} \frac{a_{i-1}}{2^i}), \frac{a_0}{2} + \frac{1}{2} \sum_{i=1}^{\infty} \frac{a_i}{2^i}) = \left(\sum_{i=1}^{\infty} \frac{a_{i+1}}{2^i}, \sum_{i=1}^{\infty} \frac{a_{i+1}}{2^i} \right)
\]

That is \(\Phi \circ \delta = \delta \circ \Phi \).

Bigger picture

\[
\sum \xrightarrow{\delta} \sum \xrightarrow{\Phi} \sum \xrightarrow{\pi} \mathbb{C} \xrightarrow{T} \mathbb{C} \xrightarrow{\pi} \sum \xrightarrow{\Psi} \sum^+ \xrightarrow{\Theta^+} \sum^+ \]
\[
\Phi \xrightarrow{(0,1)^2} F \xrightarrow{(0,1)^2} \Phi
\]

\[
\pi \xrightarrow{T} \pi
\]

\[
\Psi \xrightarrow{T} \Psi
\]