Problem 1
Let \(f(n) = \phi(n)/n \), and let \(\{n_k\}_{k=1}^\infty \) be the sequence of values \(n \) at which \(f \) attains a “record low”; i.e., \(n_1 = 1 \) and, for \(k \geq 2 \), \(n_k \) is defined as the smallest integer > \(n_{k-1} \) with \(f(n_k) < f(n) \) for all \(n < n_k \). (For example, since the first few values of the sequence \(f(n) \) are \(1, 1/2, 2/3, 1/2, 4/5, 1/3, \ldots \), we have \(n_1 = 1, n_2 = 2, \) and \(n_3 = 6, \) and the corresponding values of \(f \) at these arguments are \(1, 1/2, \) and \(1/3 \).) Find (with proof) a general formula for \(n_k \) and \(f(n_k) \).

Problem 2
Find all arithmetic functions \(f \) satisfying the given relation:

(i) \(f * f = e \)
(ii) \(f * f = f \)
(iii) \(f * f = 1 \)

Problem 3
Find a “simple” evaluation of each function:

(i) \(g_k(n) = \sum_{d|n, (d, k) = 1} \mu(d) \), where \(k \in \mathbb{N} \) is fixed.
(ii) \(f = \mu * \mu^2 \).

Problem 4
Assume \(f \) is multiplicative. Prove that:

(a) \(f^{-1}(n) = \mu(n)f(n) \) for square-free \(n \).
(b) \(f^{-1}(p^a) = f(p)^2 - f(p^2) \) for every prime \(p \).
(c) Show that if \(f \neq e \) and \(f \) is completely multiplicative, then \(f^{-1} \) is not completely multiplicative.

Problem 5
Suppose \(f \) is multiplicative.

(a) Prove that \(\sum_{d|n} f(d) = \prod_{p^a|n} (1 + f(p) + f(p^2) + \cdots + f(p^a)) \).
(b) Suppose \(\sum_{n=1}^\infty |f(n)| \) converges. Show that \(\sum_{n=1}^\infty f(n) = \prod_p (1 + f(p) + f(p^2) + \cdots) \).

Problem 6
Let \(f(n) = |\{(n_1, n_2) \in \mathbb{N}^2 : [n_1, n_2] = n\}| \), where \([n_1, n_2]\) is the least common multiple of \(n_1 \) and \(n_2 \). Show that \(f \) is multiplicative and evaluate \(f \) at prime powers.

Problem 7
An arithmetic function \(f \) is called periodic if there exists a positive integer \(k \) such that \(f(n+k) = f(n) \) for all \(n \in \mathbb{N} \); the integer \(k \) is called a period for \(f \). Show that if \(f \) is completely multiplicative and periodic, then the values of \(f \) are either zero or roots of unity. (A root of unity is a complex solution of \(z^n = 1 \) for some \(n \in \mathbb{N} \).)