Problem 1
Let \(M(x) = \sum_{n \leq x} \mu(n) \). Using Perron inversion with \(1/\zeta(s) \), show that
\[
M(x) = O(xe^{-c\sqrt{\log x}}),
\]
where \(c \) is a positive constant. You may use without proof the following fact: For some positive \(B \),
\[
\left| \frac{1}{\zeta(s)} \right| \ll \log(|t| + 2) \quad \left(\sigma \geq 1 - \frac{B}{\log(|t| + 2)}, \text{ all } t \right).
\]

Problem 2
Prove the following properties of the \(\Gamma \)-function.
(a) for all real \(x \) not equal to a nonpositive integer and all \(y \neq 0 \), prove that \(|\Gamma(x+iy)| < |\Gamma(x)| \).
(b) Show that \(\frac{\Gamma'(1/2)}{\Gamma(1/2)} = -\gamma - 2 \log 2 \).
(c) Show that \(\Gamma(s) \) is increasing for real \(s \geq \frac{3}{2} \).

Problem 3
(a) Make a table of the Dirichlet characters modulo 24 (a table listing each character and its value at the numbers coprime to 24).
(b) Make a multiplication table for the character group \(C_{24} \).

Problem 4
The claim in this problem may seem surprising at first, but it’s easy to prove!
Show that if every arithmetic progression \(l \mod k \) with \((l,k) = 1 \) contains at least one prime, then every such progression contains infinitely many primes.

Problem 5
Bonus Problem (20 points). Let \(f \) be an arithmetic function with \(f(1) \neq 0 \), and \(g \) the convolution inverse of \(f \), and let \(F(s) \) and \(G(s) \) be the Dirichlet series associated with \(f \) and \(g \). In general, the convergence of \(F(s) \) in some half-plane does not imply that \(G(s) \) also converges in the same half-plane. In class, an example was given \((f(1) = 1, f(2) = -1, \text{ and } f(n) = 0 \text{ for } n \geq 2)\) for which \(F(s) \) was convergent for all \(s \), but \(G(s) \) was convergent only in the half-plane \(\sigma > 0 \). Changing \(f(2) \) to \(f(2) = -2^\alpha \), where \(\alpha \in \mathbb{R} \), \(G(s) \) converges in the half-plane \(\sigma > \alpha \). Is it possible that \(F(s) \) converges everywhere, but \(G(s) \) converges nowhere?