New explicit constructions of RIP matrices

Jean Bourgain1 Steven J. Dilworth2 Kevin Ford3 Sergei Konyagin4 Denka Kutzarova5

1Institute For Advanced Study
2University of South Carolina
3University of Illinois
4Steklov Mathematical Institute
5Bulgarian Academy of Sciences

July 20-22, 2011
RIP matrices

Definition

An $n \times N$ matrix (with $n < N$) Φ has the Restricted Isometry Property (RIP) of order k with constant δ if, for all x with at most k nonzero coordinates, we have

$$(1 - \delta)\|x\|_2^2 \leq \|\Phi x\|_2^2 \leq (1 + \delta)\|x\|_2^2.$$

Application: sparse signal recovery

- $x \in \mathbb{C}^N$ is a signal with at most k nonzero components
- Φx is a lower dimensional linear measurement
- Candès, Romberg and Tao (2005-6) showed that given Φx, one can effectively recover x by linear programming;
- It suffices, for sparse signal recovery, that Φ satisfies RIP with fixed constant $\delta < \sqrt{2} - 1$ (Candès, 2008).
Given N, n (fix $\delta = \frac{1}{3}$, say), find a RIP matrix Φ with maximal k (Alternatively, minimize n given N, k).

Theorem (Kashin (1977); Garnaev-Gluskin (1984))

Suppose $n \leq N/2$. Choose entries of Φ as independent random variables. With positive probability, Φ will satisfy RIP of order k, for $k = \frac{cn}{\log(N/n)}$.

Other random constructions given by Candès - Tao (2005), Rudelson/Vershinin (2008), Mendelson, Pajor and Tomczak-Jaegermann (2007).

The problem is closely related to the Gel’fand width problems.
Theorem (Candès - Tao, 2005)

For all RIP matrices Φ, $k = O\left(\frac{n}{\log(N/n)}\right)$.

The proof uses the lower bound for the Gel’fand width problem due to Garnaev and Gluskin (1984):

$$d^n(U(\ell_1^N), \ell_2) \gg \sqrt{\frac{\log(N/n)}{n}},$$

where, $U(\ell_1^N)$ is the unit ℓ_1-ball in \mathbb{R}^N, and for a set K,

$$d^n(K, \ell_2) := \inf_{\text{subspace } Y \text{ of } \mathbb{R}^N} \sup\{\|x\|_2 : x \in K \cap Y\}.$$
Coherence

Definition

The coherence μ of unit vectors $\mathbf{u}_1, \ldots, \mathbf{u}_N \in \mathbb{C}^n$ is

$$
\mu := \max_{r \neq s} |\langle \mathbf{u}_r, \mathbf{u}_s \rangle|.
$$

Sets of vectors with small coherence are spherical codes

Proposition

Suppose that $\mathbf{u}_1, \ldots, \mathbf{u}_N$ are the columns of Φ with coherence μ.

For all k, Φ satisfies RIP of order k with constant $\delta = k\mu$.

Cor: Φ satisfies RIP of order $k = 1/(3\mu)$ and $\delta = \frac{1}{3}$.

Proof: For a k-sparse vector \mathbf{x},

$$
||\|\Phi \mathbf{x}\|_2^2 - ||\mathbf{x}\|_2^2|| = \sum_{r \neq s} |x_r x_s \langle \mathbf{u}_r, \mathbf{u}_s \rangle| \leq \mu \left(\sum|x_r|\right)^2 \leq k\mu ||\mathbf{x}\|_2^2.
$$
Explicit constructions of RIP matrices: coherence

Many explicit constructions of vectors u_1, \ldots, u_N satisfying

$$\mu = O\left(\frac{\log N}{\sqrt{n} \log n}\right),$$

Corollary: Such Φ with columns u_j satisfies RIP with $\delta = \frac{1}{3}$ and all $k = \frac{c \sqrt{n} \log n}{\log N}$.

Limitation: (Levenshtein, 1983) For all u_1, \ldots, u_N,

$$\mu \geq c \left(\frac{\log N}{n \log(n/ \log N)}\right)^{1/2} \geq \frac{c}{\sqrt{n}},$$

With coherence, we cannot deduce RIP of order larger than \sqrt{n}.
Kashin (1977): prime p, $n = p$, $r \geq 1$,

$$A \subseteq \{(a_1, \ldots, a_r) : 0 \leq a_1 < \cdots < a_r < p\}, \quad N = |A| \leq \binom{p}{r}.$$

For $a \in A$, let

$$u_a = \frac{1}{\sqrt{p - r}} \left(\left(\frac{(j + a_1) \cdots (j + a_r)}{p} \right) : j \in \mathbb{F}_p \right)^T.$$

Here

$$\left(\frac{a}{p} \right) = \begin{cases}
0 & p | a \\
1 & p \nmid a \text{ and } x^2 \equiv a \pmod{p} \text{ has a solution} \\
-1 & p \nmid a \text{ and } x^2 \equiv a \pmod{p} \text{ has no solution.}
\end{cases}$$

Coherence: By Weil’s bound, for $a \neq a'$,

$$\left| \langle u_a, u_{a'} \rangle \right| = \frac{1}{p - r} \left| \sum_{j=0}^{p-1} \left(\frac{(j + a_1) \cdots (j + a_r)}{p} \right) \right| \leq \frac{2r \sqrt{p}}{p - r} \lesssim \frac{r}{\sqrt{p}} \lesssim \frac{\log N}{\sqrt{n} \log n}.$$
Explicit constructions: DeVore

DeVore (2007): prime p, $n = p^2$, $r \geq 1$

P_r = a rich subset of the polynomials over \mathbb{F}_p of degree $\leq r$, $N = |P_r| \leq p^{r+1}$. Say $P_r = \{f_1, \ldots, f_N\}$.

For $1 \leq j \leq N$, $a, b \in \{0, 1, \ldots, p-1\}$, let

$$u_j(ap + b) = \begin{cases} \frac{1}{\sqrt{p}} & (a, b) = (x, f_j(x)) \text{ for some } x \\ 0 & \text{else.} \end{cases}$$

Coherence: If $f \neq g$ and $N \approx p^{r+1}$, then

$$\langle u_f, u_g \rangle = \frac{1}{p} \# \{ x \in \mathbb{F}_p : f(x) = g(x) \} \leq \frac{r}{p} \leq \frac{r}{\sqrt{n}} \lesssim \frac{\log N}{\sqrt{n \log n}}.$$
Nelson-Temlyakov (2010):

\(P_r \) is a rich subset of the polynomials over \(\mathbb{F}_p \) of degree \(\leq r \),
\(N = |P_r| \leq p^{r+1} \).

Same \(P_r \), but now \(n = p \) and

\[
\mathbf{u}_f = \frac{1}{\sqrt{p}} \left(e^{2\pi i f(x)/p} : x \in \mathbb{F}_p \right).
\]

By Weil’s bounds again, for \(f \neq g \),

\[
\left| \langle \mathbf{u}_f, \mathbf{u}_g \rangle \right| = \frac{1}{p} \left| \sum_{x \in \mathbb{F}_p} e^{2\pi i (f(x) - g(x))/p} \right| \lesssim \frac{r - 1}{\sqrt{p}} \lesssim \frac{\log N}{\sqrt{n \log n}}.
\]
Breaking the \sqrt{n} barrier with explicit constructions

Theorem (BDFKK, 2010)

*For some constants $\alpha > 0$ and $\beta > 0$, large N and $N^{1-\alpha} \leq n \leq N$, the $N \times n$ matrix below satisfies RIP of order $k = n^{1/2+\beta}$.***

The construction: Take m a large integer, p a large prime,

- $A = \{1, 2, \ldots, \lceil p^{1/m} \rceil\}$,
- $M = 2^{2m-1}$, $r = \left\lfloor \frac{\log p}{2m \log 2} \right\rfloor$,
- $B = \left\{ \sum_{j=0}^{r-1} x_j (2M)^j : 0 \leq x_j \leq M - 1 \right\} \subset \{1, \ldots, p - 1\}$

- matrix columns $u_{(a,b)} = \frac{1}{\sqrt{p}} \left(e^{2\pi i (ax^2 + bx)/p} \right)_{1 \leq x \leq p}$, $a \in A, b \in B$.
- $N = |A| \cdot |B| \asymp p^{1+1/(2m)}$, $n = p$.
Some ideas of the proof

\[A = \{1, 2, \ldots, \lfloor p^{1/m} \rfloor \}, \quad B = \left\{ \sum_{j=0}^{r-1} x_j (2M)^j : 0 \leq x_j \leq M - 1 \right\} . \]

Matrix columns \(u_{(a,b)} = p^{-1/2} \left(e^{2\pi i (ax^2 + bx)/p} \right)_{x \in \mathbb{F}_p} ; \ a \in A, \ b \in B. \)

\[|B| \asymp p^{1 - \frac{1}{2m}}, \ N = |A| \cdot |B|, \ n = p. \]

(1) \(\langle u_{a,b}, u_{a',b'} \rangle = 0 \) if \(a = a', \ b \neq b' \) and otherwise

\[\langle u_{a,b}, u_{a',b'} \rangle = \frac{\sigma_p}{\sqrt{p}} \left(\frac{a - a'}{p} \right) e^{-2\pi i (b - b')^2 [4(a - a')]^{-1}/p} \]

by Gauss’ formula. Here \(c^{-1} \) means inverse in \(\mathbb{F}_p, \ \sigma_p \in \{-1, 1\}. \)

(2) The game is to capture cancellations among the exponentials. This is done using additive combinatorics. A key: adding elements of \(B \) involves no “carries” in base-2M.
Let u_1, \ldots, u_N be the columns of an $n \times N$ matrix Φ, $\|u_j\|_2 = 1$.

It is more convenient to work with 0-1 vectors x (“flat” vectors). If the RIP property holds when restricted to flat vectors, then it holds with all vectors with an increase in δ.

Lemma (BDFKK, 2010)

Let $k \geq 2^{10}$ and s be a positive integer. Suppose that the coherence of vectors u_j is $\leq 1/k$ and, for any disjoint $J_1, J_2 \subset \{1, \ldots, N\}$ with $|J_1| \leq k, |J_2| \leq k$, we have

$$\left| \langle \sum_{j \in J_1} u_j, \sum_{j \in J_2} u_j \rangle \right| \leq \delta k.$$

Then Φ satisfies RIP of order $2sk$ with constant $44s\sqrt{\delta} \log k$.

We show this “flat-RIP” property in the lemma with $k = \sqrt{p} = \sqrt{n}$ and $\delta = p^{-\varepsilon}$ for some fixed $\varepsilon > 0$. Then take $m \approx p^{\varepsilon/3}$.
Further issues

Matrix columns \(u_{(a,b)} = p^{-1/2} \left(e^{2\pi i (ax^2 + bx)/p} \right) ; a \in \mathcal{A}, b \in \mathcal{B}. \)

\[|\mathcal{B}| \asymp p^{1 - \frac{1}{2m}}, \quad N = |\mathcal{A}| \cdot |\mathcal{B}|, \quad n = p. \]

1. Our \(\Phi \) have complex entries. However, for any RIP matrix \(\Phi \), replacing each entry \(a + ib \) with the \(2 \times 2 \) matrix \(\begin{pmatrix} a & b \\ -b & a \end{pmatrix} \) yields a \(2n \times 2N \) real matrix having identical RIP parameters.

2. We are able to prove the RIP property for these matrices provided \(m \) is very large (approximately \(10^8 \)). This comes from the use of some results in additive combinatorics which are believed to be sub-optimal. Consequently, \(n > N^{1-\beta} \) for some very small \(\beta > 0 \) is required for our proofs to work. It is likely that our matrices satisfy RIP for much smaller \(m \).

3. Can we generalize our construction, using cubic or higher degree polynomials in place of quadratics (as in the constructions of DeVore and Nelson-Temlyakov)? **Problem:** there is no analog of Gauss’ formula. Such matrices may still satisfy RIP (and would allow us to take smaller \(n \)).
We give a brief introduction to the field of additive combinatorics, and describe some results that are needed in our argument: these include:

1. Bounds for sumsets with subsets of \mathcal{B}
2. A version of the Balog-Szemeredi-Gowers lemma
3. Bounds for the number of solutions of equations of the formula

$$\frac{1}{a_1} + \cdots + \frac{1}{a_k} = \frac{1}{b_1} + \cdots + \frac{1}{b_k},$$

with $a_1, \ldots, b_k \in \mathcal{C}$, where \mathcal{C} is an arbitrary set of positive integers, and equations

$$a_1 + a_2 b = a_3 + a_4 b,$$

where $a_i \in \mathcal{A}$, $b \in \mathcal{B}$ and \mathcal{A} and \mathcal{B} are arbitrary sets of integers.
We describe in some detail how additive combinatorics are used to prove that our matrices satisfy RIP with $k \geq n^{1/2+\beta}$.

By the flat-RIP lemma, it suffices to prove the following:

Lemma

Let m be sufficiently large and p sufficiently large. Then for any disjoint sets $\Omega_1, \Omega_2 \subset A \times B$ such that $|\Omega_1| \leq \sqrt{p}$, $|\Omega_2| \leq \sqrt{p}$,

\[
\left| \sum_{\omega_1 \in \Omega_1} \sum_{\omega_2 \in \Omega_2} \langle u_{\omega_1}, u_{\omega_2} \rangle \right| \leq p^{1/2-\varepsilon},
\]

where $\varepsilon > 0$ is fixed (depends only on m).

The inequality with $\varepsilon = 0$ is trivial (from Gauss’ formula, $|\langle u_{\omega_1}, u_{\omega_2} \rangle| \leq 1/\sqrt{p}$ for all ω_1, ω_2).
New explicit constructions of RIP matrices

Lecture # 2 : Additive Combinatorics

Standard references:

Set addition basics

Let G be an additive group. For $A, B \subset G$, define the sumset

$$A + B := \{ a + b : a \in A, b \in B \}.$$

Important cases: $G = \mathbb{Z}$, $G = \mathbb{Z}^d$, $G = \mathbb{Z}/m\mathbb{Z}$, $G = (\mathbb{Z}/m\mathbb{Z})^d$.

Example: $\{1, 2, 4\} + \{0, 3, 6\} = \{1, 2, 4, 5, 7, 8, 10\}$.

Generic problem. Given information about A, bound $|A + A|$.

Inverse problem. Given that $|A + A|$ is small (resp. large), deduce some structural information about A.

Remark: Similar theory for $A - A = \{a - a' : a, a' \in A\}$, since

$$a_1 + a_2 = a_3 + a_4 \iff a_1 - a_3 = a_4 - a_2.$$
Example. \(G = \mathbb{Z}, |A| = N. \) Then

\[
2N - 1 \leq |A + A| \leq N^2.
\]

Proof: WLOG \(\min A = 0. \) If \(A = \{a_1 = 0, \ldots, a_N\}, \)

\(0 < a_2 < \cdots < a_N, \) then \(A + A \) contains

\[
S = \{a_1, a_2, \ldots, a_N, a_2 + a_N, a_3 + a_N, \ldots, a_N + a_N\}.
\]

Theorem: \(|A + A| = 2N - 1 \) if and only if \(A \) is an arithmetic progression: \(A = \{a, a + d, \ldots, a + (N - 1)d\} \) for some \(a, d \in \mathbb{Z}. \)

Proof. (i) WLOG \(\min A = 0. \) If \(A = \{0, d, \ldots, d(N - 1)\}, \) then \(A + A = \{0, d, \ldots, d(2N - 2)\}. \)

(ii) if \(|A| = N \) and \(|A + A| = 2N - 1, \) then \(A + A = S. \) In particular, \(a_2 + a_i \in S \) for all \(i < N. \) But \(a_2 + a_i < a_2 + a_N, \) so

\(a_2 + a_i \in A \) for \(i < N. \) Easy to see \(a_2 + a_i = a_{i+1} \) for \(i < N, \) so \(A \)

is an arithmetic progression.
Sets with small doubling

A set of the form

\[B = \{ a + k_1 d_1 + \cdots + k_r d_r : 0 \leq k_i \leq m_i - 1 (1 \leq i \leq r) \} \]

is called an \(r \)-dimensional arithmetic progression. If \(r \) is small, these sets have small doubling, i.e. \(|B + B| \leq 2^r |B| \).

Theorem (G. Freiman, 1960s)

If \(A \) is a finite set of integers and \(|A + A| < KN \), then \(A \) is a subset of an \(r \)-dimensional arithmetic progression with \(r \) and \(m_1 \cdots m_r / |A| \) bounded in terms of \(K \). We say \(A \) has “additive structure”.

Very active area today to find good bounds on \(r \) and \(m_1 \cdots m_r / |A| \) as functions of \(K \).
Recall $\mathcal{B} = \left\{ \sum_{j=0}^{r-1} x_j (2M)^j : 0 \leq x_j \leq M - 1 \right\}$.

- Addition in \mathcal{B} involves no “carries” in base-2M. In an additive sense, \mathcal{B} behaves like $\mathcal{C}_{M,r} = \{0, \ldots, M - 1\}^r$. Let

$$\phi \left(x_{r-1}(2M)^{r-1} + \cdots + x_1(2M) + x_0 \right) = (x_0, \ldots, x_{r-1}).$$

Then ϕ is a “Freiman isomorphism”: for $b_1, \ldots, b_4 \in \mathcal{B}$,

$$b_1 + b_2 = b_3 + b_4 \iff \phi(b_1) + \phi(b_2) = \phi(b_3) + \phi(b_4).$$

In particular, for $D, E \subset \mathcal{B}$, $|D + E| = |\phi(D) + \phi(E)|$.

- $\mathcal{C}_{M,r}$ does not possess long arithmetic progressions (M is fixed, r is very large). Hence, we expect that $D + E$ cannot be too small, if $D, E \subset \mathcal{B}$.

Recall $B = \left\{ \sum_{j=0}^{r-1} x_j (2M)^j : 0 \leq x_j \leq M - 1 \right\}$.

For nonempty $D \subset B$, it is trivial that

$$|D + D| \geq |D|.$$

Theorem B1 (BDFKK, 2010)

Let $r, M \in \mathbb{N}, M \geq 2$ and let $\tau = \tau_M$ be the solution of the equation $M^{-2\tau} + (1 - 1/M)^\tau = 1$. Then $\tau > \frac{1}{2}$ and for any $D \subset C_{M,r}$ we have

$$|D + D| \geq |D|^{2\tau}.$$

Approximately, $\tau_M \approx \frac{1}{2} + \frac{\log 2}{2 \log M} \approx \frac{1}{2} + \frac{1}{4m}$. We conjecture that the extremal case is $D = C_{M,r}$ and that τ may be improved to

$$\tau' = \tau'_M = \frac{\log(2M - 1)}{2 \log M}.$$

This is true for $M = 2$ (Woodall, 1977).
Additive properties of integer reciprocals

Recall $\mathcal{A} = \{1, 2, 3, \ldots, \lfloor p^{1/s} \rfloor \}$.

Theorem A (BDFKK, 2010)

Suppose $m \geq 1$, \mathcal{N} is a set of positive integers in $[1, N]$. For every $\varepsilon > 0$, the number of solutions of

$$\frac{1}{n_1} + \cdots + \frac{1}{n_m} = \frac{1}{n_{m+1}} + \cdots + \frac{1}{n_{2m}} \quad (n_i \in \mathcal{N}, 1 \leq i \leq 2m)$$

is $\leq C(m, \varepsilon)|\mathcal{N}|^m N^\varepsilon$, for some constant $C(m, \varepsilon)$.

Remark: There are $\geq |\mathcal{N}|^m$ trivial solutions ($n_{m+i} = n_i$, $i \leq m$)

Idea (from a paper of Karatsuba): Clearing denominators leads to divisibility conditions $n_i | \prod_{j \neq i} n_j$. So every prime dividing one of the n_i must divide another. Key inequality:

$$\forall \varepsilon > 0, \exists c(\varepsilon) \text{ such that } \# \{d : d \mid n\} \leq c(\varepsilon)n^\varepsilon.$$
Additive energy, I

If $A, B \subset G$, we define the additive energy $E(A, B)$ of the sets A and B as the number of solutions of the equation

$$a_1 + b_1 = a_2 + b_2, \quad a_1, a_2 \in A; b_1, b_2 \in B.$$

Special case: $A = B, G = \mathbb{Z}$.

- Trivially, $E(A, A) \leq |A|^3$.
- If A is an arithmetic progression, $E(A, A) \sim \frac{2}{3} |A|^3$.
- If $E(A, A) \geq |A|^3 / K$ with small K, must A be “structured” (like an arithmetic progression of small dimension)? **No!** If A contains a long arithmetic progression, say of length $\delta |A|$, then $E(A, A) > \frac{2}{3} \delta^3 |A|^3$, even if the other $(1 - \delta) |A|$ elements of A are unstructured (look like a random set).
- However, if $E(A, A)$ is close to $|A|^3$ then A must have a large structured subset.
Theorem E (BDFKK, 2010)

If A is a finite set of integers and $E(A, A) \geq |A|^3/K$, then there exists $A' \subset A$ such that $|A'| \geq |A|/(20K)$ and

$$|A' + A'| \leq 10^{17} K^{20} |A'|.$$

The proof is a relatively simple consequence of a variant of the fundamental Balog-Szemeredi-Gowers Lemma:

Theorem (Bourgain-Garaev, 2009)

If $F \subset A \times A$, $|F| \geq |A|^2/L$ and

$$\# \{a_1 + a_2 : (a_1, a_2) \in F \} \leq L|A|.$$

Then there exists $A' \subset A$ such that $|A'| \geq |A|/(10L)$ and $|A' - A'| \leq 10^4 L^9 |A|$.

The proof uses “elementary” graph-theory (Tao-Vu §2.5, 6.4).
Additive energy, III. Theorems B1 and E

<table>
<thead>
<tr>
<th>Theorem B1 (BDFKK, 2010)</th>
</tr>
</thead>
<tbody>
<tr>
<td>For some $\tau > \frac{1}{2}$ and for any $D \subset B$ we have $</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem E (BDFKK, 2010)</th>
</tr>
</thead>
<tbody>
<tr>
<td>If A is a finite set of integers and $E(A, A) \geq</td>
</tr>
</tbody>
</table>

Corollary: Suppose $A \subset B$. Take $K = c |A'|^{(2\tau - 1)/20}$ (A' from Theorem E) and deduce

<table>
<thead>
<tr>
<th>Theorem B2 (BDFKK, 2010)</th>
</tr>
</thead>
<tbody>
<tr>
<td>For any $A \subset B$, $E(A, A) = O \left(</td>
</tr>
</tbody>
</table>
Twisted energy averages

Theorem (Bourgain, 2009 (GAFA))

Suppose $A \subset \mathbb{F}_p$, $B \subset \mathbb{F}_p \setminus \{0\}$. For some $c > 0$,

$$\sum_{b \in B} E(A, b \cdot A) := \# \{ a_1 + ba_2 = a_3 + ba_4 : a_i \in A, b \in B \} \ll (\min(\frac{p}{|A|}, |A|, |B|))^{-c} |A|^3 |B|.$$

Remarks. An explicit version of the theorem, with $c = \frac{1}{10430}$, given by Bourgain-Glibuchuk (2011). **Open:** Is the statement true with any $c < 1$?

Idea (over \mathbb{Z}): Say $A = \{0, 1, \ldots, N - 1\}$. So $E(A, A)$ is very large. **However,** if $b \geq 1$, we have $a_1 - a_3 = b(a_4 - a_2)$, which forces $|a_4 - a_2| < (N - 1)/b$ and hence $E(A, b \cdot A) \leq 2N^3/b$.

Bourgain, Dilworth, Ford, Konyagin, Kutzarova

Explicit RIP matrices 26 / 41
Fourier analysis and sumsets

For a set $A \subset \mathbb{Z}$, let

$$T_A(\theta) = \sum_{a \in A} e^{2\pi i \theta a}$$

be the trigonometric sum associated with A. Clearly,

$$T_A(\theta)^2 = \sum_{c \in A + A} r(c) e^{2\pi i \theta c}, \quad r(c) = \#\{(a, a') \in A^2 : a + a' = c\}.$$

Also,

$$r(c) = \int_0^1 T_A(\theta)^2 e^{-2\pi i \theta c} \, d\theta.$$

If A is an arithmetic progression $\{a, a + d, \ldots, a + (N - 1)d\}$, then $T_A(\theta)$ is a geometric sum - concentrated mass (large only for θ near points $k/d, k \in \mathbb{Z}$).

Conversely, if the mass of $T_A(\theta)$ is very concentrated, then A has “arithmetic progression - like behavior”, i.e. $A + A$ is small.
Fourier analysis in finite fields

For a set $A \subset \mathbb{F}_p$, let

$$T_A(\theta) = \sum_{a \in A} e^{2\pi i \theta a}.$$

Then

$$r(c) = \#\{(a, a') \in A^2 : a + a' = c\} = \frac{1}{p} \sum_{a \in \mathbb{F}_p} T_A^2(a/p) e^{-2\pi i ac/p}. $$
Recall (Gauss sum formula)

\[
\langle \mathbf{u}_a, b, \mathbf{u}_{a'}, b' \rangle = \frac{\sigma(a, a', p)}{\sqrt{p}} e^{-2\pi i (b-b')^2 \lambda(a, a')/p},
\]

where \(|\sigma(a, a', p)| = 1\) and \(\lambda(a, a') = (4(a-a'))^{-1} \mod p\).

Lemma

For any \(\theta \in \mathbb{F}_p \setminus \{0\}\), \(B_1 \subset \mathbb{F}_p\), \(B_2 \subset \mathbb{F}_p\) we have

\[
\left| \sum_{b_1 \in B_1, b_2 \in B_2} e^{2\pi i \theta (b_1-b_2)^2 / p} \right| \leq |B_1|^{1/2} E(B_1, B_1)^{1/8} |B_2|^{1/2} E(B_2, B_2)^{1/8} p^{1/8}.
\]

Proof sketch. Three successive applications of Cauchy-Schwarz.

Observe that

\[
E(B, B) = \frac{1}{p} \sum_{a=0}^{p-1} \left| \sum_{b \in B} e^{2\pi i ab / p} \right|^4
\]
New explicit constructions of RIP matrices

Lecture # 3 : Sketch of the proof of our theorem
Plus Turán’s power sums
Theorem

Let m be a sufficiently large, fixed constant and p sufficiently large. There is a fixed $\varepsilon > 0$ (depending only on m), so that for any disjoint sets $\Omega_1, \Omega_2 \subset A \times B$ such that $|\Omega_1| \leq \sqrt{p}$, $|\Omega_2| \leq \sqrt{p}$,

$$S := \left| \sum_{\omega_1 \in \Omega_1} \sum_{\omega_2 \in \Omega_2} \langle u_{\omega_1}, u_{\omega_2} \rangle \right| \leq p^{1/2 - \varepsilon},$$

Def. $A_i = \{a_i : (a_i, b_i) \in \Omega_i\}$ $(i = 1, 2)$.

Def. $\Omega_i(a_i) = \{b_i : (a_i, b_i) \in \Omega_i\}$ $(i = 1, 2)$.
Small A_i

(i) Suppose $|A_i| \leq p^{\gamma/3}$ for $i = 1, 2$. Recall

Lemma

For any $\theta \in \mathbb{F}_p^*$, $B_1 \subset \mathbb{F}_p$, $B_2 \subset \mathbb{F}_p$ we have

$$\left| \sum_{b_1 \in B_1, b_2 \in B_2} e^{2\pi i \theta (b_1 - b_2)^2 / p} \right| \leq |B_1|^{1/2} E(B_1, B_1)^{1/8} |B_2|^{1/2} E(B_2, B_2)^{1/8} p^{1/8}.$$

By this lemma, Lemma B2 (that $E(B, B) \ll |B|^{3-\gamma}$ for $B \subset \mathcal{B}$), and Hölder:

$$S \leq p^{-1/2} \sum_{a_1 \in A_1} \sum_{a_2 \in A_2} |\Omega_1(a_1)|^{7-\gamma} 8 |\Omega_2(a_2)|^{7-\gamma} 8 p^{1/8}$$

$$\leq p^{-1/2 + 1/8} |A_1|^{1+\gamma} 8 \left(\sum_{a_1} |\Omega_1(a_1)| \right)^{7-\gamma} 8 |A_2|^{1+\gamma} 8 \left(\sum_{a_2} |\Omega_2(a_2)| \right)^{7-\gamma} 8$$

$$\leq p^{1/2 - \gamma/8 + \gamma^2/12} \leq p^{1/2 - \varepsilon}, \quad \text{if } \varepsilon \leq \frac{\gamma}{24} - \frac{\gamma^2}{12}.$$
(ii) Suppose $E(\Omega_i(a_i), \Omega_i(a_i)) \leq |\Omega_1(a_i)|^3 p^{-2/m}$ for some i (say $i = 1$). By the same lemma and Hölder’s inequality, the sum of $\langle u(a_1, a_2), u(a_2, b_2) \rangle$ over quadruples with such a_1 is

$$ \leq p^{-\frac{1}{2} + \frac{1}{8}} \sum_{a_1, a_2} |\Omega_1(a_1)|^{\frac{7}{8}} p^{-\frac{2}{8m}} |\Omega_2(a_2)|^{\frac{7-\gamma}{8}} $$

$$ \leq p^{-\frac{3}{8} - \frac{2}{8m}} |A_1|^{\frac{1}{8}} |A_2|^{\frac{1+\gamma}{8}} \left(\sum_{a_1} |\Omega_1(a_1)| \right)^{\frac{7}{8}} \left(\sum_{a_2} |\Omega_2(a_2)| \right)^{\frac{7-\gamma}{8}} $$

$$ \leq p^{\frac{1}{2} - \frac{\gamma}{16} + \frac{\gamma}{8m}} \leq p^{\frac{1}{2} - 2\varepsilon}, \quad \varepsilon \leq \frac{\gamma}{32} - \frac{\gamma}{16m}. $$
(iii) We now consider the case \(\max |A_i| > p^{\gamma/3} \) (WLOG \(|A_2| > p^{\gamma/3} \)), and \(E(B, B) > |B|^3 p^{-2/m} \), \(B = \Omega_1(a_1) \).

Using Theorem E, we can reduce to consideration of the case where \(|B - B| \leq p^{30/m}|B| \) and \(|B + B| \leq p^{60/m}|B| \). With \(a_1 \) fixed, we show that

\[
\left| \sum_{\substack{b_1 \in B \\ a_2 \in A_2, b_2 \in \Omega_2(a_2)}} \left(\frac{a_1 - a_2}{p} \right) e_p \left((b_1 - b_2)^2 [4(a_1 - a_2)^{-1}] \right) \right| \ll |B| p^{1/2 - \varepsilon}.
\]

where \(e_p(x) = e^{2\pi i x/p} \). Denote by \(T(a_1) \) the above sum.

Subdivide into cases according to the size of \(\Omega_2(a_2) \): say

\[
M_2 < |\Omega_2(a_2)| \leq 2M_2, \quad M_2 = 2^j.
\]
Further details

Say m is even. Cauchy-Schwartz + Hölder:

$$|T(a_1)|^2 \leq \sqrt{p}|B|^{2-2/m} \left(\sum_{b_1, b \in B} |F(b, b_1)|^m \right)^{\frac{1}{m}},$$

where

$$F(b, b_1) = \sum_{a_2 \in A_2, b_2 \in \Omega_2(a_2)} e_p \left(\frac{b_1^2 - b^2}{4(a_1 - a_2)} - \frac{b_2(b_1 - b)}{2(a_1 - a_2)} \right).$$

Also,

$$\sum_{b_1, b \in B} |F(b, b_1)|^m \leq \sum_{x \in B+B} \left| \sum_{a_2 \in A_2, b_2 \in \Omega_2(a_2)} e_p \left(\frac{xy}{4(a_1 - a_2)} - \frac{b_2y}{2(a_1 - a_2)} \right) \right|^m$$

$$\leq M_2^m \sum_{y \in B-B} \sum_{a^{(i)} \in A_2} \left| \sum_{x \in B+B} e_p \left(\frac{xy}{4} \sum_{i=1}^{m/2} \left[\frac{1}{a_1 - a^{(i)}} - \frac{1}{a_1 - a^{(i+m/2)}} \right] \right) \right|.$$
Further details, II

For some complex numbers ε_y, ξ of modulus ≤ 1,

$$\sum_{b_1, b \in B} |F(b, b_1)|^m \leq M_2^m \sum_{y \in B-B} \sum_{\xi \in \mathbb{F}_p} \lambda(\xi) \varepsilon_y, \xi \sum_{x \in B+B} e_p(xy\xi/4),$$

$$\lambda(\xi) = \#\left\{ a^{(1)}, \ldots, a^{(m)} \in A_2 : \sum_{i=1}^{m/2} \left(\frac{1}{a_1 - a(i)} - \frac{1}{a_1 - a(i+m/2)} \right) = \xi \right\}.$$

By Theorem A, since $A_2 \subset [1, p^{1/m}]$, for any $\nu > 0$,

$$\lambda(0) \ll_\nu |A_2|^{m/2} p^\nu.$$

Therefore,

$$\sum_{b_1, b \in B} |F(b, b_1)|^m \ll_\nu M_2^m |A_2|^{m/2} p^\nu |B - B||B + B|$$

$$+ \sum_{y \in B-B} \sum_{\xi \in \mathbb{F}_p^*} \lambda(\xi) \varepsilon_y, \xi \sum_{x \in B+B} e_p(xy\xi/4).$$
Let

\[\zeta(z) = \sum_{\substack{y \in B - B \\xi \in \mathbb{F}_p^* \\ y\xi = z}} \lambda(\xi). \]

By Hölder and Parseval, we arrive at

\[
\left| \sum_{y \in B - B} \sum_{\xi \in \mathbb{F}_p^*} \varepsilon'_{y,\xi} \sum_{x \in B + B} e_p(xy\xi/4) \right| \leq |B + B|^{3/4} \left\| \zeta \ast \zeta \right\|_2^{1/2} p^{1/4}.
\]

Then

\[
\left\| \zeta \ast \zeta \right\|_2 \leq \sum_{\xi, \xi' \in \mathbb{F}_p^*} \lambda(\xi) \lambda(\xi') \left| \{ y_1 - (\xi/\xi') y_2 = y_3 - (\xi/\xi') y_4 : y_i \in B - B \} \right|^{1/2}.
\]

The RHS is estimated using a weighted version of Bourgain’s theorem on \(\sum_{d \in D} E(A, d \cdot A) \), with \(A = B - B \).
Def: For $|z_j| = 1$, let

$$M_N(z) = \max_{m=1,2,\ldots,N} \left| \sum_{j=1}^{n} z_j^m \right|.$$

Problem: find z to minimize $M_N(z)$.

Connection with coherence: The vectors

$$u_m = \frac{1}{\sqrt{n}} \left(z_1^{m-1}, \ldots, z_n^{m-1} \right)^T, \quad 1 \leq m \leq N,$$

have coherence $\mu = \frac{1}{n} M_{N-1}(z)$.

Constructions for Turán’s power sums

Erdős - Rényi (1957): If \(z_j \) chosen randomly on the unit circle for each \(j \), then with overwhelming probability, \(M_N(z) \ll \sqrt{n \log N} \).

Montgomery (1978): \(p \) prime, \(n = p - 1 \), \(\chi \) a Dirichlet character of order \(p - 1 \). Put

\[
z_j = \chi(j) e^{2\pi ij/p}, \quad 1 \leq j \leq p - 1.
\]

Then \(M_N(z) \leq \sqrt{p} = \sqrt{n + 1} \) for \(N < n(n + 1) \).

Andersson (2008). \(p \) prime, \(N = p^d - 1 \), \(\chi \) a generator of the group of characters of \(F = \mathbb{F}_{p^d} \), \(y \in F \) but in no proper subfield. Put

\[
z_j = \chi(y + j - 1), \quad 1 \leq j \leq p, \quad n = p.
\]

By a character sum bound of N. Katz,

\[
M_N(z) \leq (d - 1)\sqrt{p} \leq \sqrt{n \log N} \log n.
\]

Remark: the bound is nontrivial for \(N < e^{\sqrt{n}} \).
New explicit construction

Theorem (BDFKK, 2010)

We give explicit constructions of z such that

$$M_N(z) = O \left((\log N \log \log N)^{1/3} n^{2/3} \right).$$

Remark. Our constructions are better than Andersson’s constructions for $N \geq \exp\{n^{1/4}\}$, nontrivial for $N < \exp\{cn/\log n\}$.

Corollary. Explicit constructions of vectors u_1, \ldots, u_N with coherence

$$\mu = O \left(\left(\frac{\log N \log \log N}{n} \right)^{1/3} \right).$$

This matches, up to a power of $\log \log N$, the best known explicit constructions for codes when $n \lesssim (\log N)^4$.
Some ideas of the proof

Based on ideas in a paper of Ajtai, Iwaniec, Komlós, Pintz and Szemerédi (1990).
They were interested in constructing sets $T \subseteq \{1, \ldots, N\}$ such that all the Fourier coefficients

$$\sum_{t \in T} e^{2\pi imt/N}, \quad 1 \leq m \leq N - 1,$$

are uniformly small, with $|T|$ taken a small as possible.

The construction: Parameters $P_0, P_1 > P_0$, $R \approx \log(P_0 / \log P_1)$,

$$T_q = \text{multiset } \{r+s/p : 1 \leq r \leq R, P_0 < p \leq 2P_0 \text{ prime, } |s| < p/2\}$$

of residues modulo q. Finally, let z be the multiset of numbers $e^{2\pi it/q}$, $P_1 < q \leq 2P_1$ (q prime), $t \in T_q$.