PART I. DUE MARCH 20

1. (10 points each) Use theorems from class to prove the following
 (a) Let $\Xi(x, y, z)$ denote the number of integers $n \leq x$ which have no prime factor in $(y, z]$. Prove that uniformly in $1.5 \leq y \leq z \leq x$, we have
 $$\Xi(x, y, z) \ll \frac{x \log y}{\log z}$$
 and uniformly for $1.5 \leq z \leq x/2$ that
 $$\Phi(x, z) = \Xi(x, 1.5, z) \gg \frac{x}{\log z}.$$
 Lastly, prove the asymptotic
 $$\Phi(x, z) \sim e^{-\gamma} \frac{x}{\log z} \quad (z \to \infty, z = x^{o(1)}).$$
 In particular, this establishes Theorem Bu.
 (b) **Almost primes in short intervals.** Prove that for every $\delta > 0$, there is a natural number k so that whenever $x \geq x_0(\delta)$, then the interval $(x, x + x^\delta]$ contains an integer q with $\Omega(q) \leq k$.

2. (10 points) Use sieve ideas (e.g. the general sieve) to set up a *square-free sieve* to estimate
 $$\# \{n \leq x : n \text{ is square-free} \} = x \prod_p \left(1 - \frac{1}{p^2} \right) + O(\sqrt{x}) = \frac{6}{\pi^2} x + O(\sqrt{x}).$$

3. (15 points) Suppose $F(x) \in \mathbb{Z}[x]$, $F = F_1 \cdots F_m$, where each F_i has positive leading coefficient and is irreducible over \mathbb{Q}, no F_i is a rational multiple of any other F_j, and for every prime p, there is an n so that $p \nmid F(n)$. Prove that for some constant C, depending on $\deg(F)$, and for $x > x_0(F)$, $x_0(F)$ some constant depending on F, we have
 $$|\{n \leq x : \forall i, \Omega(F_i(n)) \leq C\}| \gg_F \frac{x}{\log^m x}.$$
4. (30 points) (a) In the lecture notes for the Brun-Hooley sieve, a convenient all-purpose choice was made for the parameters \(z_j \) and \(k_j \). Develop theorems analogous to Theorems BH.2 and BH.3 for more general choices of \(z_j \) and \(k_j \), keeping in mind the goals (U) and (L); e.g. the summation over the remainder terms should range up to a fixed power of \(z \), and the analog of the number \(E \) should be finite.

(b) it was shown in class that for infinitely many integers \(n \), \(\Omega(n) \leq 13 \) and \(\Omega(n + 2) \leq 13 \), and that for infinitely many primes \(p \), \(\Omega(p + 2) \leq 18 \). Using your theorems from part (a), improve the numbers 13 and 18.
PART II. DUE MAY 6 (incomplete list)

5. (20 points) Using “elementary” methods, show that
\[\exp \left(c_1 \log x \log \log x \right) \leq \Psi(x, \log x) \leq \exp \left(c_2 \log x \log \log x \right) \]
for some constants 0 < c_1 < c_2 and large x.

6. (20 points) Prove that uniformly for 10 \leq \log^3 z \leq y \leq z \leq x,
\[\# \left\{ n \leq x : \prod_{p \mid n, p \leq y} p^v > z \right\} = xe^{-u \log u + O(u \log \log(3u))}, \quad u = \frac{\log z}{\log y}. \]
That is, counting numbers which have a large y-smooth part.

7. (10 points) Show that for every \(\alpha < \frac{1}{2} \), a positive proportion of primes \(p \) satisfy both \(P^+(p-1) > p^\alpha \) and \(P^+(p+1) > p^\alpha \).

8. (10 points) (Selberg’s sieve) Let \(A_1, A_2, L, \kappa > 0 \), and let \(g \) be a multiplicative function satisfying
\[(\Omega_1) \quad 0 \leq g(p) \leq 1 - A_1 \quad (p \text{ prime}) \]
and
\[(\Omega_2(\kappa, L)) \quad -L \leq \sum_{w \leq p \leq y} g(p) \log p - \kappa \log \frac{y}{w} \leq A_2 \quad (2 \leq w \leq y). \]
Let \(h \) be the multiplicative function defined by \(h(p) = \frac{g(p)}{1-g(p)} \) for prime \(p \).
(i) Prove that uniformly for \(2 \leq w \leq y \) and \(s \geq 0 \),
\[\prod_{w \leq p \leq y} \left(1 - \frac{1}{p^{s+1}} \right)^\kappa \left(1 + \frac{h(p)}{p^s} \right) = 1 + O \left(\frac{L + 1}{\log w} \right). \]
Hint: be careful. You may want to consider separately the cases \(w < e^{L+1} \) and \(w \geq e^{L+1} \).
(ii) Use (i) to show that
\[\lim_{s \to 0^+} \prod_p \left(1 - \frac{1}{p^{s+1}} \right)^\kappa \left(1 + \frac{h(p)}{p^s} \right) = \prod_p \left(1 - \frac{1}{p} \right)^\kappa (1 + h(p)). \]