On the smallest simultaneous power nonresidue modulo a prime

K. Ford, M. Z. Garaev and S. V. Konyagin

Abstract

Let \(p \) be a prime and \(p_1, \ldots, p_r \) be distinct prime divisors of \(p - 1 \). We prove that the smallest positive integer \(n \) which is a simultaneous \(p_1, \ldots, p_r \)-power nonresidue modulo \(p \) satisfies

\[
n < p^{1/4-c_r+o(1)} \quad (p \to \infty)
\]

for some positive \(c_r \) satisfying \(c_r = e^{-(1+o(1))r} \) \((r \to \infty)\).

Mathematical Subject Classification: 11A15, 11A07, 11N29

Keywords: simultaneous power nonresidues; primitive roots; sieve methods; well-spaced divisors

1 Introduction

Let \(n(p) \) be the smallest positive quadratic nonresidue modulo \(p \) and \(g(p) \) be the smallest positive primitive root modulo \(p \). The problem of upper bound estimates for \(n(p) \) and \(g(p) \) starts from the early works of Vinogradov. It is believed that \(n(p) = p^{o(1)} \) and \(g(p) = p^{o(1)} \) as \(p \to \infty \). Vinogradov [14, 15] proved that

\[
n(p) \ll p^{1/(2k\sqrt{\pi})} (\log p)^2, \quad g(p) < \frac{2^{k+1}(p - 1)p^{1/2}}{\phi(p - 1)},
\]

where \(k \) is the number of distinct prime divisors of \(p - 1 \). Hua [9] improved Vinogradov’s result to \(g(p) < 2^{k+1}p^{1/2} \) and then Erdős and Shapiro [6] refined
it to \(g(p) \ll k^C p^{1/4} \), where \(C \) is an absolute constant. These bounds were improved by Burgess \([1, 2]\) to

\[
n(p) < p^{1/4 + o(1)}, \quad g(p) < p^{1/4 + o(1)} \quad (p \to \infty).
\]

The Burgess bounds remains essentially the best known up to date, in a sense that it is not even known that \(n(p) \ll p^{1/4 \sqrt{e}} \) or that \(g(p) \ll p^{1/4} \).

If one allows a small exceptional set of primes, then better estimates may be obtained. Using his “large sieve”, Linnik \([12]\) proved that for any \(\varepsilon > 0 \), there are only \(O_\varepsilon(\log \log x) \) primes \(p \leq x \) for which \(n(p) > p^{\varepsilon} \). The sharpest to date results for \(g(p) \) (which also hold for the least prime primitive root modulo \(p \)) are due to Martin \([13]\), who proved that for any \(\varepsilon > 0 \), there is a \(C > 0 \) so that \(g(p) = O((\log p)^C) \) with at most \(O(x^{\varepsilon}) \) exceptions \(p \leq x \). All of these type of results are “purely existential”, in that one cannot say for which specific primes \(p \) the bounds hold (say, in terms of the factorization of \(p - 1 \)).

From elementary considerations it follows that an integer \(g \) is a primitive root modulo \(p \) if and only if for any prime divisor \(q \mid p - 1 \) the number \(g \) is a \(q \)-th power nonresidue modulo \(p \). Thus, if \(p_1, \ldots, p_k \) are all the distinct prime divisors of \(p - 1 \), then \(g(p) \) is the smallest positive simultaneous \(p_1, \ldots, p_k \)-th power nonresidue modulo \(p \). In the present paper we prove the following result.

Theorem 1. Let \(p \) be a prime number and \(p_1, \ldots, p_r \) be distinct prime divisors of \(p - 1 \). Then the smallest positive integer \(n \) which is a simultaneous \(p_1, \ldots, p_r \)-th power nonresidue modulo \(p \) satisfies

\[
n < p^{1/4 - c_r} e^{C(\log r)^{1/2}(\log p)^{1/2}}
\]

where \(C > 0 \) is an absolute constant and \(c_r = e^{-r(1 + o(1))} \) as \(r \to \infty \).

The novelty of the result is given by the factor \(p^{-c_r} \). We observe that for \(c_r < (\log p)^{-1/2} \) (in particular, for \(r \geq 0.5 + \varepsilon \) log log \(p \) and \(p \geq p(\varepsilon) \)) this factor is dominated by the exponential factor.

The following corollaries directly follow from Theorem 1.

Corollary 1. Let \(p \) be a prime number and \(p_1, \ldots, p_r \) be distinct prime divisors of \(p - 1 \), where \(r \) is fixed. Then the smallest positive integer \(n \) which is a simultaneous \(p_1, \ldots, p_r \)-th power nonresidue modulo \(p \) satisfies

\[
n < p^{1/4 - c_r + o(1)} \quad (p \to \infty).
\]
From our earlier discussion, the upper bound given in Theorem 1 holds also for $g(p)$ whenever $p - 1$ has r distinct prime factors.

Corollary 2. For any $\varepsilon > 0$, if $p - 1$ has at most $(0.5 - \varepsilon) \log \log p$ distinct prime divisors, then $g(p) = o(p^{1/4})$ as $p \to \infty$.

The counting function of primes satisfying the hypothesis of Corollary 2 is $x(\log x)^{-3/2 + (\log 2)/2 - O(\varepsilon)}$ (the upper bound follows from e.g., [4, Inequality (5)]; the lower bound can be obtained using sieve methods).

Remark 1. The focus of our arguments is to establish bounds which are uniform in r. We have made no attempt to optimize the value of c_r for small r, and leave this as a problem for further study.

Our proof of Theorem 1 proceeds in three main steps. The first is a standard application of character sums to show that a large proportion of integers $n < p^{1/4 + o(1)}$ are simultaneous p_1, \ldots, p_r-th power nonresidue modulo p. Next, we show that if such a number n has many divisors ($r2^r$ divisors suffice), then for some pair $d < d'$ of these divisors, the smaller number $n' = dn/d'$ is also a simultaneous p_1, \ldots, p_r-th power nonresidue modulo p. This procedure is most efficient when the ratios d'/d are uniformly large. In the third step we show that integers possessing many well-spaced divisors are sufficiently dense, so that there must be one such number in the set guaranteed by first step (with an appropriate quantification of “well-spaced” and “dense”).

2 Character sums and distribution of power nonresidues

We begin by recalling the well-known character sum estimate of Burgess [2, 3].

Lemma 1. If p is a prime and χ is a non-principal character modulo p and if H and m are arbitrary positive integers, then

$$\left| \sum_{n=N+1}^{N+H} \chi(n) \right| \ll H^{1-1/m} p^{(m+1)/4m^2} (\log p)^{1/m}$$

for any integer N, where the implied constant is absolute.
See the proof in [11], (12.58). In the remark after the proof the authors announce that the factor \((\log p)^{1/m}\) can be replaced by \((\log p)^{1/(2m)}\), but this is not important for us.

Lemma 2. Let \(p\) be a prime number and \(p_1, \ldots, p_r\) be distinct prime divisors of \(p-1\). The number \(J\) of integers \(n \leq H\) which are simultaneous \(p_1, \ldots, p_r\)-th power nonresidues modulo \(p\) satisfies

\[
J \geq 0.12H \prod_{i=1}^r \left(1 - \frac{1}{p_i}\right) + O \left(r^{13} H^{1-1/m} p^{(m+1)/4m^2} (\log p)^{1/m}\right),
\]

where the constant implied in the “\(O\)”-symbol is absolute.

Proof. We follow the method of [5]. Let \(C\) be a sufficiently large constant, to be chosen later. Assuming that \(p_1 < \cdots < p_r\), we choose the largest \(s \leq r\) so that \(p_s \leq Cr^2\) (if \(p_1 > Cr^2\), then set \(s = 0\)). Let \(J_1\) be the number of integers \(n \leq H\) which are simultaneous \(p_1, \ldots, p_s\)-th power nonresidues modulo \(p\). For \(j > s\), let \(J_{2,j}\) be the number of integers \(n \leq H\) which are \(p_j\)-th power residues modulo \(p\). Clearly,

\[
J \geq J_1 - \sum_{j=s+1}^r J_{2,j}. \quad (2.1)
\]

Let \(g\) be a primitive root of \(p\) and let \(\chi_0\) be the principal Dirichlet character modulo \(p\). We will denote by \(\chi\) a generic Dirichlet character modulo \(p\). By orthogonality, for \((x, p) = 1\) we have

\[
\frac{1}{d} \sum_{\chi^d = \chi_0} \chi(x) = \begin{cases} 1, & \text{if } \text{ind}_g x \equiv 0 \pmod{d}, \\ 0, & \text{if } \text{ind}_g x \not\equiv 0 \pmod{d}. \end{cases}
\]

A number \(n\) is a \(p_i\)-power residue modulo \(p\) if and only if \(p_i | \text{ind}_g n\). Hence,

\[
J_1 = \sum_{\substack{n \leq H \\ \gcd(\text{ind}_g n, p_1 \cdots p_s) = 1}} 1 = \sum_{d | p_1 \cdots p_s} \mu(d) \sum_{\substack{n \leq H \\ d | \text{ind}_g n}} 1
\]

and for \(j = s + 1, \ldots, r\) we have

\[
J_{2,j} = \sum_{\substack{n \leq H \\ p_j | \text{ind}_g n}} 1. \quad (2.2)
\]
We denote
\[
R = H^{1-1/m}p^{(m+1)/4m^2}(\log p)^{1/m}.
\]
Using Lemma 1 for \(\chi \neq \chi_0 \), we get for any \(d \) that
\[
\sum_{n \leq H \atop d | \text{ind}_s n} 1 = \frac{1}{d} \sum_{\chi \neq \chi_0} \sum_{n \leq H} \chi(n) = \frac{H}{d} + O(R). \tag{2.3}
\]
To estimate \(J_1 \) we use a lower bound sieve as in [5] combining with (2.3). Brun’s sieve [8, Theorem 2.1 and the following Remark 2] suffices. Here the “sieve dimension” is \(\kappa = 1 \). Taking \(\lambda = \frac{1}{4} \), \(b = 1 \), \(z = C r^2 \) and \(L = O(R) \) in [8, Theorem 2.1 and the following Remark 2], we get that
\[
J_1 \geq H \prod_{i=1}^{s} \left(1 - \frac{1}{p_i} \right) \left(1 - 2 \lambda^{2b} e^{2\lambda} + O \left(\frac{1}{\log z} \right) \right) - O(z^{4.1} R)
\]
\[
\geq 0.13 H \prod_{i=1}^{s} \left(1 - \frac{1}{p_i} \right) - O(r^{13} R)
\]
if \(C \) is large enough.

By (2.2) and (2.3),
\[
\sum_{j=s+1}^{r} J_{2,j} = H \sum_{j=s+1}^{r} \frac{1}{p_j} + O(r R) \leq \frac{H}{C r} + O(r R),
\]
since \(p_j > C r^2 \) for all \(j \geq s + 1 \). Invoking (3.3) and assuming that \(C \geq 100 \), we get
\[
J_1 - \sum_{j=s+1}^{r} J_{2,j} \geq 0.12 H \prod_{i=1}^{s} \left(1 - \frac{1}{p_i} \right) + O(r^{13} R).
\]
Using (2.1) we complete the proof of the lemma. \(\square \)

3 Reduction of simultaneous nonresidues

The aim of this section is to show that if a positive integer \(n \) which is a simultaneous \(p_1, \ldots, p_r \)-th power nonresidue modulo \(p \) has many divisors then it is possible to construct \(n' < n \) which is also a simultaneous \(p_1, \ldots, p_r \)-th power nonresidue modulo \(p \).
Lemma 3. Let a be a non-zero real number, $\ell \in \mathbb{N}$ and
\[a_1, a_2, \ldots, a_{2\ell-1} \] be any sequence of $2\ell - 1$ real numbers (not necessarily distinct). Then for some indices $i_1 < i_2 < \ldots < i_\ell$ we have that $a_{i_s} - a_{i_t} \neq a$ for all $1 \leq s, t \leq \ell$.

Proof. We may assume that $a > 0$. Define an equivalence relation on the numbers i by setting $i \sim j$ if $a_i - a_j = ka$ for some integer k. Let S_1, \ldots, S_m be the different (nonempty) equivalence classes. Clearly $a_i - a_j = a$ is only possible for i, j within a given equivalence class. Let b_r be the smallest element of S_r, for each $r = 1, \ldots, m$. Divide each S_r into two subclasses,
\[S_r^{(0)} = \{ i \in S_r : a_i - a_{b_r} = ka \text{ for some even integer } k \}, \]
\[S_r^{(1)} = \{ i \in S_r : a_i - a_{b_r} = ka \text{ for some odd integer } k \}. \]

Obviously $a_i - a_j = a$ is impossible within each subclass $S_r^{(0)}, S_r^{(1)}$. For $1 \leq r \leq m$, define $\varepsilon_r = 0$ if $|S_r^{(0)}| \geq |S_r^{(1)}|$, and $\varepsilon_r = 1$ otherwise, and let $B = \bigcup_{r=1}^{m} S_r^{(\varepsilon_r)}$. Then $|B| \geq \ell$, and $a_i - a_j \neq a$ for $i, j \in B$. Any set $\{i_1, \ldots, i_\ell\} \subset B$ then satisfies the requirements of the lemma. \qed

Remark 2. The conclusion of Lemma 3 is best possible, as may be seen by taking $a_i = ai$ for $1 \leq i \leq 2\ell - 1$; in any set of $\ell + 1$ elements a_i there are two with difference a.

Lemma 4. Let q be a prime, $u \in \mathbb{R}$, $u > 1$ and $a \in \mathbb{Z}$, $a \not\equiv 0 \pmod{q}$. Assume that
\[a_1, a_2, \ldots, a_t \] is a sequence of $t \geq 2uq/(q-1)$ integers (not necessarily distinct). Then for some $\ell \in \mathbb{N}$, $\ell \geq u$ and indices $i_1 < i_2 < \ldots < i_\ell$ we have that
\[a_{i_v} - a_{i_w} \not\equiv a \pmod{q} \quad (1 \leq v, w \leq \ell). \]

Proof. We can assume that $a = 1$. Define $\ell = \lfloor u \rfloor$. From the pigeon-hole principle, there is a residue class $h \pmod{q}$ containing at most t/q elements from the sequence (3.2). Since
\[\left\lfloor \frac{t - \ell}{q} \right\rfloor = \left\lfloor \frac{t(q-1)}{q} \right\rfloor \geq \left\lfloor 2u \right\rfloor \geq 2\ell - 1, \]
after rearranging (3.2) we may assume that

\[a_s \not\equiv h \pmod{q} \quad (s = 1, 2, \ldots, 2\ell - 1). \]

Define \(c_s \in \{1, 2, \ldots, q - 1\} \) by

\[c_s \equiv a_s - h \pmod{q}. \]

By Lemma 3, there is a subsequence \(c_{i_1}, \ldots, c_{i_\ell} \) such that

\[c_{i_v} - c_{i_w} \not\equiv 1 \quad (1 \leq v, w \leq \ell). \]

Since \(1 \leq c_i \leq q - 1 \) this implies that

\[c_{i_v} - c_{i_w} \not\equiv 1 \pmod{q} \quad (1 \leq v, w \leq \ell) \]

and thus

\[a_{i_v} - a_{i_w} \not\equiv 1 \pmod{q} \quad (1 \leq v, w \leq \ell). \]

Remark 3. For \(q = 2 \) it is enough to require \(t \geq 2u \). Indeed, we can choose a large subsequence of \(a_1, a_2, \ldots, a_t \) of the same parity.

Corollary 3. Let \(p_1, p_2, \ldots, p_r \) be prime numbers, and

\[b = (b_1, b_2, \ldots, b_r) \in \mathbb{F}_{p_1}^* \times \mathbb{F}_{p_2}^* \times \cdots \times \mathbb{F}_{p_r}^*. \]

Let

\[t > 2^r \prod_{i:p_i > 2} \frac{p_i}{p_i - 1} \]

and

\[a_1, a_2, \ldots, a_t \]

be a sequence of \(t \) elements from \(\mathbb{F}_{p_1} \times \mathbb{F}_{p_2} \times \cdots \times \mathbb{F}_{p_r} \). Then for some \(i < j \) we have that

\[a_j - a_i \in (\mathbb{F}_{p_1} \setminus \{b_1\}) \times (\mathbb{F}_{p_2} \setminus \{b_2\}) \times \cdots \times (\mathbb{F}_{p_r} \setminus \{b_r\}). \]

Corollary 3 follows from \(r \) applications of Lemma 4 and taking into account Remark 3.
Corollary 4. Let p be a prime number and suppose p_1, \ldots, p_r are distinct prime divisors of $p-1$. Let n be a simultaneous p_1, \ldots, p_r-th power nonresidue modulo p and $d_1 < \cdots < d_t$ be some divisors of n where

$$t > 2^r \prod_{p_i > 2} \frac{p_i}{p_i - 1}.$$

Then there exists i, j such that $1 \leq i < j \leq t$ and the number $n' = nd_i/d_j$ is also a simultaneous p_1, \ldots, p_r-th power nonresidue modulo p.

Proof. Let g be a primitive root modulo p. To each number x we associate the vector $(u_1, u_2, \ldots, u_r) \in \mathbb{F}_{p_1} \times \mathbb{F}_{p_2} \times \cdots \times \mathbb{F}_{p_r}$, so that for $1 \leq i \leq r$, $x \equiv g^{u_i} \mod p$ where $0 \leq s_i < p_i$

Let the vector (b_1, b_2, \ldots, b_r) correspond to n and the vectors a_1, a_2, \ldots, a_t correspond to d_1, \ldots, d_t, respectively. Apply Corollary 3 and select the indices $i < j$ such that

$$a_j - a_i \in \left(\mathbb{F}_{p_1} \setminus \{b_1\} \right) \times \left(\mathbb{F}_{p_2} \setminus \{b_2\} \right) \times \cdots \times \left(\mathbb{F}_{p_r} \setminus \{b_r\} \right)$$

Then $n' = nd_i/d_j$ is a simultaneous p_1, p_2, \ldots, p_r-power nonresidue modulo p. \hfill \Box

Remark 4. We note that if p_1, p_2, \ldots, p_r are distinct primes, then

$$r > \prod_{p_i > 2} \frac{p_i}{p_i - 1}. \tag{3.3}$$

Hence, in Corollaries 3 and 4 one can take $t = 2^r r$.

4 Integers with well-spaced divisors

Let $P^-(n)$ and $P^+(n)$ denote the smallest and largest prime factor of n, respectively, let $\omega(n)$ be the number of distinct prime factors of n, and let $\tau(n)$ be the number of positive divisors of n.

Lemma 5. For each fixed constant $c > 1/\log 2 = 1.442 \ldots$, there is $\eta = \eta(c) > 0$ such that the following holds. Uniformly for integers t, $2 \leq t \leq (\log x)^{1/c}$, all but $O_c(x/t^\eta)$ integers $n \leq x$ have t divisors $d_1 < d_2 < \cdots < d_t$ such that $d_{j+1}/d_j > x^{1/c}$ for all $1 \leq j \leq t - 1$.

8
Proof. We may assume that $t \geq 10$. Take
\[\varepsilon = \frac{c - 1}{4 \log 2}, \quad \alpha = \frac{1}{\log 2} + \varepsilon. \]

Write each $n \leq x$ in the form abd where $P^-(d) > x^{1/\log t}$, $P^+(a) \leq x^{1/(\alpha t^\log t)}$ and all prime factors of b lie in $(x^{1/(t^\alpha \log t)}, x^{1/\log t}]$. We divide n into several categories. Let $k_0 = \lceil \frac{\log 2 t}{\log 2} \rceil$. Let S_0 be the set of $n \leq x$ with either $d = 1$ or with b not squarefree. Let S_1 be the set of n with $d > 1$, b squarefree and $\omega(b) < k_0$. We denote $\alpha_j = j\varepsilon$ for $1 \leq j \leq J - 1 := \lceil \alpha/\varepsilon \rceil$, $\alpha_j = \alpha$, $a_j = x^{1/(t^\alpha \log t)}$ for $j = 1, \ldots, J$. Let S_2 be the set of n with $d > 1$, b squarefree and the number of primes from the interval $(a_j, x^{1/\log t}]$ dividing n is less than $k_j := (\alpha_j - \varepsilon) \log t$ for some $j = 1, \ldots, J - 1$. Let S_3 be the set of the remaining integers n.

We first show that S_0, S_1, and S_2 are small. By standard counts for smooth numbers,
\[|S_0| \leq \Psi(x, x^{1/\log t}) + \sum_{p > x^{1/(t^\alpha \log t)}} \frac{x}{p^2} \ll \frac{x}{t} + \frac{x}{x^{1/(t^\alpha \log t)}} \ll \frac{x}{t}. \]

Next, by the results of Halász [7] on the number of integers with a prescribed number of prime factors from a given set (see also Theorem 08 of [10]), we have
\[|S_1| \ll \sum_{k < k_0} xe^{-E_j \frac{E_j^k}{k!}}, \quad E = \sum_{x^{1/(t^\alpha \log t)} \leq p < x^{1/\log t}} \frac{1}{p} = \alpha \log t + O(1) \]
\[\ll xt^{-\alpha} \sum_{k < k_0} \frac{(\alpha \log t)^k}{k!} \]
\[\ll x(t^\alpha)^{-((\beta \log \beta - \beta + 1)}}, \quad \beta = \frac{1}{\alpha \log 2} = \frac{1}{1 + \varepsilon \log 2} < 1 \]
\[\ll x/t^\delta \]
for some $\delta > 0$ which depends on ε.

For any $j = 1, \ldots, J - 1$ we denote by $S_{2,j}$ the set of $n \leq x$ with less than k_j prime divisors from $(a_j, x^{1/\log t}]$. We have
\[|S_{2,j}| \ll \sum_{k < k_j} xe^{-E_j \frac{E_j^k}{k!}}, \]
where
\[E_j = \sum_{x^{1/(t^u_j \log t)} < p < x^{1/ \log t}} \frac{1}{p} = \alpha_j \log t + O(1). \]

Arguing as before we get
\[|S_{2,j}| \ll x/t^\delta' \]
for some \(\delta' > 0 \) which depends on \(\varepsilon \).

Notice that for \(n \in S_3 \), \(\tau(b) = 2^{\omega(b)} \geq 2^{k_0} \geq 2t \). Next, let \(S_4 \) be the set of \(n \in S_3 \) for which \(b \) does not have \(t \) well-spaced divisors in the sense of the lemma. Since \(d > 1 \) for such \(n \), given such a \emph{bad} value of \(b \), using a standard sieve bound the number of choices for the pair \((a,d)\) is bounded above by
\[\sum_{a} |\{d \leq x/ab : P^-(d) > x^{1/\log t}\}| \ll \sum_{a} \frac{x/ab}{\log(x^{1/\log t})} \ll \frac{x}{bt^\alpha}. \]

Hence,
\[|S_4| \ll \sum_{\text{bad } b} \frac{x}{bt^\alpha} \quad (4.1) \]

A number \(b \) which is bad has many pairs of \emph{neighbor divisors}. To be precise, let \(\sigma = t^{-c \log x} \) and define
\[W^*(b; \sigma) = |\{(d',d'') : d'|b, d''|b, d' \neq d'', |\log(d'/d'')| \leq \sigma\}|. \]

Let \(d_1 < \cdots < d_{\tau(b)} \) be the divisors of \(b \). We construct the subsequence \(D_1 < \cdots < D_r \) of this sequence:
\[D_1 = 1, \quad D_i = \min\{d_j : d_j > x^{t^{-c}} D_{i-1}\} \ (i > 1). \]

The process is terminated if \(D_i \) does not exist. Let \(D_{r+1} = +\infty \). The set \(\{d_1, \ldots, d_{\tau(b)}\} \) is divided into \(r \) subsets \(D_i \), \(i = 1, \ldots, r \), where
\[D_i = \{d_j : D_i \leq d_j < D_{i+1}\}. \]

We see that \((d',d'')\) is counted in \(W^*(b; \sigma) \) if \(d',d'' \in D_i \) for some \(i \) and \(d' \neq d'' \). Hence,
\[W^*(b; \sigma) \geq \sum_{i=1}^{r} |D_i|(|D_i| - 1) = \sum_{i=1}^{r} |D_i|^2 - \tau(b). \]
Since \(\tau(b) \geq 2t \) and \(r \leq t \), we get by the Cauchy-Schwartz inequality that

\[
\tau(b)^2 = \left(\sum_{i=1}^{r} |D_i| \right)^2 \leq t \left(\sum_{i=1}^{r} |D_i|^2 \right) \leq t(W^*(b; \sigma) + \tau(b)) \leq tW^*(b; \sigma) + \frac{1}{2} \tau(b)^2.
\]

Therefore,

\[
\sum_{\text{bad } b} \frac{1}{b} \leq \sum_{\text{all } b} \frac{2W^*(b; \sigma)t}{b\tau(b)^2},
\]

each sum being over squarefree integers whose prime factors lie in \((x^{1/(\alpha \log t)}, x^{1/\log t}) \).

In the latter sum, fix \(k = \omega(b) \), write \(b = p_1 \cdots p_k \), where the \(p_i \) are primes, and \(p_1 < \cdots < p_k \). Then \(W^*(p_1 \cdots p_k; \sigma) \) counts the number of pairs \(Y, Z \subset \{1, \ldots, k\} \) with \(Y \neq Z \) and

\[
\left| \sum_{i \in Y} \log p_i - \sum_{i \in Z} \log p_i \right| \leq \sigma.
\]

(4.3)

Fix \(Y, Z \), and let \(I \) be the maximum element of the symmetric difference \((Y \cup Z) - (Y \cap Z)\). We fix \(I \) and count the number of \(p_1, \ldots, p_k \) satisfying (4.3). We further partition the solutions, according to the condition \(a_j < p_I \leq a_{j-1} \), for \(j = 1, \ldots, J \). Fix the value of \(j \). If all the \(p_i \) are fixed except for \(p_I \), then (4.3) implies that \(p_I \) lies in some interval of the form \([U, Uc^{2\sigma}]\). As \(p_I > x^{1/\alpha_j \log t} \) as well, and \(\alpha > c \), we have (putting \(U_j = \max(U, x^{1/\alpha_j \log t}) \))

\[
\sum_{p_I} \frac{1}{p_I} \ll \log \left(1 + \frac{2\sigma}{\log U_j} \right) \ll \frac{\sigma}{\log U_j} \ll t^{\alpha_j - c} \log t.
\]

Hence, for each fixed \(k, j, Y \) and \(Z \),

\[
\sum_{x^{1/\alpha_j \log t} < p_1 \cdots p_k \leq x^{1/\log t}} \frac{1}{p_1 \cdots p_k} \ll \frac{t^{\alpha_j - c} (\log t)}{(k-1)!} \sum_{x^{1/\alpha_j \log t} < p \leq x^{1/\log t}} \frac{1}{p^{k-1}} \ll \frac{t^{\alpha_j - c} (\log t) (\alpha \log t + O(1))^{k-1}}{(k-1)!}.
\]

(4.4)

Now we estimate the number \(N(I, j) \) of choices for the pair \(Y, Z \) for fixed \(I \) and \(j \). Since \(p_I \leq a_{j-1} \), the condition \(n \in S_3 \) implies \(I \leq k - k_{j-1} \). For any \(i \leq I \) there are at most four possibilities: \(i \in Y \cap Z \), \(i \in Y \setminus Z \), \(i \in Z \setminus Y \),
\(i \notin Y \cup Z \). For \(i > I \) there are two possibilities: \(i \in Y \cap Z \) and \(i \notin Y \cup Z \). Therefore,

\[
N(I, j) \leq 4^I 2^{k-I} \leq 4^k 2^{-k_j-1} \leq 4^{k_I - \alpha_j \log 2 + 2 \varepsilon \log 2}.
\] (4.5)

It follows from (4.4) and (4.5) that

\[
\sum_{\omega(b) = k} \frac{W^*(b; \sigma)t}{b \tau(b)^2} \ll \sum_{j=1}^J t^{1+(1-\log 2)\alpha_j + 2\varepsilon - c} \sum_{k} \frac{\alpha \log t + O(1)^k - 1}{(k-1)!}.
\]

Taking into account that \(\alpha_j \leq \alpha \) and summing on \(j, k \) we get

\[
\sum_{b} \frac{W^*(b; \sigma)t}{b \tau(b)^2} \ll t^{1+2\varepsilon + (2-\log 2)\alpha - c}.
\]

Thus, by (4.1) and (4.2),

\[
|S_4| \ll \frac{x}{t \varepsilon}.
\]

Therefore, there are \(x - O(x/t^{\min(\delta, \delta', \varepsilon)}) \) numbers \(n \leq x \) for which \(b \) does have \(t \) well-spaced divisors.

Remark 5. Lemma 5 is best possible in the sense that the conclusion does not hold for \(c < 1/\log 2 \). In fact, for any \(c < 1/\log 2 \), the number of integers \(n \leq x \) that do have \(t \) divisors \(d_1, \ldots, d_t \) with \(d_{j+1}/d_j < n^{1/t^c} \) for all \(j \) is \(O(x/t^n) \) for some \(\eta > 0 \) which depends on \(c \).

Proof. It is well-known that if \(t \) is large, \(c < 1/\log 2 \) and \(\varepsilon \) small enough, then a typical integer \(n \) has \(r \sim (c + \varepsilon) \log t \) prime factors \(p_1, \ldots, p_r \) in \([n^{1/t^{c+\varepsilon}}, n] \). This can be seen, e.g., by the theorem of Halász used in the estimation of \(|S_1| \). In fact, the number of exceptional \(n \leq x \) is \(O_c(x/t^n) \). Thus, a typical \(n \) has about \(2^{(c+\varepsilon) \log t} = t^{(c+\varepsilon) \log 2} < t \) divisors composed of such primes. Also, for most of these \(n \), \(n/(p_1 \cdots p_r) < n^{1/(2t^c)} \); by Theorem 07 of [10], the number of exceptions \(n \leq x \) is \(O(x \exp\{-c_1 t^c\}) \) for some \(c_1 > 0 \). Suppose that such an \(n \) has \(t \) well-spaced divisors \(d_1, \ldots, d_t \) with \(d_{j+1}/d_j < n^{1/t} \) for all \(j \). By the pigeon-hole principle, two of these divisors share the same set of prime factors from \(\{p_1, \ldots, p_r\} \), hence their ratio is less than \(n^{1/(2t^c)} \), a contradiction.
5 Proof of Theorem 1

We rewrite the assertion of Lemma 2 as

\[J \geq 0.12H \prod_{i=1}^{r} \left(1 - \frac{1}{p_i}\right) - R', \quad R' = (5r)^{C''} H^{1-1/m} p^{(m+1)/4m^2} (\log p)^{1/m} \tag{5.1} \]

for some constant \(C'' \). Let \(\mathcal{N} \) denotes the set of \(n \in [1, H] \) which are simultaneous \(p_1, \ldots, p_r \)-th power nonresidue modulo \(p \), where

\[H = p^{1/4}e^{(C''+3)(\log p)^{1/2}(\log(5r))^{1/2}} \log p. \]

Assume that \(p \) is sufficiently large, and take

\[m = \lfloor (\log p)^{1/2}(\log(5r))^{-1/2} \rfloor. \]

Notice that \(m \gg (\log p)^{1/2}(\log \log p)^{-1/2} \to \infty \) as \(p \to \infty \). Since

\[R' = H(Hp^{-1/4}/\log p)^{-1/m} p^{1/(4m^2)} (5r)^{C''}, \]

we have

\[(Hp^{-1/4}/\log p)^{-1/m} \leq (5r)^{-C''-3} \]

and

\[p^{1/(4m^2)} \leq 5r. \]

Consequently,

\[R' \leq H(5r)^{-2}. \]

By (5.1) and (3.3),

\[J \geq (0.12r^{-1} - (5r)^{-2})H \geq 0.08H/r. \]

So, we see that

\[|\mathcal{N}| \geq 0.08H/r. \tag{5.2} \]

We consider the case

\[r < 0.6 \log \log p \tag{5.3} \]

first. We will apply Lemma 5 with \(x = H \), fixed \(c \in (1/\log 2, 1.5] \), and with \(t = Kr2^r \), where \(K \) is a sufficiently large constant depending on \(c \). By (5.2), the exceptional set in Lemma 5 is smaller than \(|\mathcal{N}| \) provided that \(K \) is large enough. The condition \(2 \leq t \leq (\log x)^{1/c} \) is satisfied due to the restriction
on \(r \) and \(c \). By Lemma 5, for some \(n \in \mathcal{N} \), there are well-separated divisors \(d_1 < \cdots < d_t \) of \(n \), satisfying \(d_{i+1}/d_i > n^{1/t^c} \) for each \(i \). Now we are in position to apply Corollary 4 and we see that there is an \(n' \leq np^{-t^c/4} \) such that \(n' \) is a simultaneous \(p_1, \ldots, p_r \)-th power nonresidue modulo \(p \). Noting that \(t^{-c}/4 = \exp\{-r(c \log 2 + o(1))\} \) and that \(c \) may be taken arbitrarily close to \(1/\log 2 \), we complete the proof.

If (5.3) does not hold, then, as we have mentioned in Section 1, the factor \(p^{-c_r} \) in the statement of the theorem is dominated by the second factor, and the claim follows from the fact that \(\mathcal{N} \neq \emptyset \).

6 Acknowledgements

The first author is supported in part by National Science Foundation grants DMS-1201442 and DMS-1501982. The third author is supported by grant RFBR 14-01-00332 and grant Leading Scientific Schools N 3082.2014.1.

References

the mean values of multiplicative arithmetic functions”’, Acta Math.

[14] I. M. Vinogradov, ‘On the distribution of quadratic residues and non-
residues’, (in Russian), Journal of the Physico-Mathematical Society of
Perm, 1919.

Address of the authors:

K. Ford, Department of Mathematics, 1409 West Green Street, University
of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
E-mail address: ford@math.uiuc.edu

M. Z. Garaev, Centro de Ciencias Matemáticas, Universidad Nacional
Autónoma de México, C.P. 58089, Morelia, Michoacán, México.
Email address: garaev@matmor.unam.mx
S. V. Konyagin, Steklov Mathematical Institute, 8 Gubkin Street, Moscow, 119991, Russia.
Email address: konyagin@mi.ras.ru