Problem 3. Let $n \geq 0$ and let X be a space with the homotopy type of a CW complex. Consider the Postnikov truncation map $t_n : X \to P_n X$, which may be assumed a relative CW complex.

Let $f : X \to Z$ be any map, where Z is an Eilenberg-MacLane space of type (G, k) for some abelian group G and $k \leq n$.

Show that there exists a map $g : P_n X \to Z$ satisfying $f \simeq g \circ t_n$, and this map g is unique up to homotopy. Here, g makes the diagram

\[
\begin{array}{ccc}
X & \xrightarrow{t_n} & P_n X \\
\downarrow f & & \downarrow g \\
& Z & \\
\end{array}
\]

commute up to homotopy.

Remark. The statement still holds when Z is a product of such Eilenberg-MacLane spaces. However, if Z is more complicated, but still n-truncated (i.e. $\pi_i(Z) = 0$ for $i > n$), then such a factorization $g : P_n X \to Z$ still exists, but its homotopy class need not be unique.