Problem 1. Show that a path-connected space is weakly equivalent to a product of Eilenberg-MacLane spaces if and only if it admits a Postnikov tower of principal fibrations with trivial k-invariants (all of them).

Note. Here, we follow Hatcher’s convention that the k-invariants are used to build the Postnikov tower of X starting from P_1X and not P_0X. In other words, by “Postnikov tower of principal fibrations”, we mean that the maps $P_nX \to P_{n-1}X$ are principal fibrations for all $n \geq 2$. Using $n \geq 1$ instead would force π_1X to be abelian.