Problem 1. Consider the standard inclusions $\mathbb{C}^0 \to \mathbb{C}^1 \to \ldots \to \mathbb{C}^n \to \mathbb{C}^{n+1} \to \ldots$ given by appending a zero in the last coordinate:

$$
\begin{bmatrix}
 z_1 \\
 z_2 \\
 \vdots \\
 z_n
\end{bmatrix} \mapsto
\begin{bmatrix}
 z_1 \\
 z_2 \\
 \vdots \\
 z_n \\
 0
\end{bmatrix}.
$$

These give rise to inclusions $\ldots \to U(n) \to U(n+1) \to \ldots$ described in terms of matrices by:

$$M \mapsto \begin{bmatrix}
 M & 0 \\
 0 & 0 \\
 0 & 0 \\
 0 & 1
\end{bmatrix},$$

where $U(n)$ denotes the Lie group of $n \times n$ unitary matrices with complex coefficients.

a. Show that the connectivity of the map $U(n) \to U(n+1)$ goes to infinity as n goes to infinity.

Solution. For each $n \geq 1$, consider the evaluation map

$$p: U(n) \to S^{2n-1}
M \mapsto M(e_n)$$

which picks out the last column of the matrix M, viewed as a unit vector in \mathbb{C}^n. Here $\{e_1, e_2, \ldots, e_n\}$ denotes the standard basis of \mathbb{C}^n.

The map p is clearly surjective, and is moreover a fibration (in fact a fiber bundle), with strict fiber $U(n-1)$, yielding the fiber sequence:

$$U(n-1) \hookrightarrow U(n) \xrightarrow{p} S^{2n-1}.$$

The homotopy fiber ΩS^{2n-1} of the inclusion $U(n-1) \hookrightarrow U(n)$ is $(2n-3)$-connected, so that the inclusion $U(n-1) \hookrightarrow U(n)$ is $(2n-2)$-connected. \square
b. Denote the infinite union $U := \colim_n U(n)$. Show that its homotopy groups satisfy

$$\pi_k U \cong \colim_n \pi_k U(n)$$

and using part (a), find n large enough (as a function of k) to guarantee that the map $U(n) \to U$ induces an isomorphism $\pi_k U(n) \cong \pi_k U$.

Solution. Since each inclusion $U(n-1) \hookrightarrow U(n)$ is a closed embedding, Corollary 2.5.6 of May-Ponto applies, providing the desired isomorphism

$$\pi_k U \cong \colim_n \pi_k U(n).$$

Note that $U(1) = S^1$ is path-connected, and thus so are all subsequent $U(n)$ for $n \geq 1$.

The connectivity estimate of part (a) guarantees the following. For $k < 2n$, not only is $\pi_k U(n) \cong \pi_k U(n+1)$ an isomorphism, but so are all subsequent induced maps on π_k:

$$\pi_k U(n) \cong \pi_k U(n+1) \cong \pi_k U(n+2) \cong \ldots$$

which proves the isomorphism $\pi_k U(n) \cong \colim_m \pi_k U(m) \cong \pi_k U$.

Therefore the following condition guarantees that n is large enough:

$$k \leq 2n - 1 \iff k + 1 \leq 2n$$

$$\iff \frac{k + 1}{2} \leq n$$

$$\iff n \geq \left\lceil \frac{k + 1}{2} \right\rceil.$$

For example, the low-dimensional homotopy groups $\pi_k U$ are achieved at the following stages:

$$\pi_0 U \cong \pi_0 U(1) = *$$

$$\pi_1 U \cong \pi_1 U(1)$$

$$\pi_2 U \cong \pi_2 U(2)$$

$$\pi_3 U \cong \pi_3 U(2)$$

$$\pi_4 U \cong \pi_4 U(3)$$

$$\pi_5 U \cong \pi_5 U(3)$$

etc.

\square
c. Compute $\pi_k U$ for $0 \leq k \leq 3$.

Solution. From part (b), we already know $\pi_0 U = *$ and $\pi_1 U \cong \pi_1 U(1) = \pi_1 S^1 \cong \mathbb{Z}$.

Since the inclusion $U(1) \hookrightarrow U(2)$ is 2-connected, it induces a surjection $0 = \pi_2(U(1)) \twoheadrightarrow \pi_2(U(2))$ which proves $\pi_2(U(2)) = 0$. From part (b), we obtain $\pi_2 U \cong \pi_2 U(2) = 0$.

In fact, we can extract more information from the fiber sequence $U(1) \hookrightarrow U(2) \twoheadrightarrow S^3$. The long exact sequence on homotopy

$$\ldots \rightarrow \pi_k S^1 \rightarrow \pi_k U(2) \rightarrow \pi_k S^3 \rightarrow \pi_{k-1} S^1 \rightarrow \ldots$$

provides the isomorphism $\pi_k U(2) \cong \pi_k S^3$ for all $k \geq 3$. In particular, we obtain $\pi_3 U(2) \cong \pi_3 S^3 \cong \mathbb{Z}$. From part (b), we obtain $\pi_3 U \cong \pi_3 U(2) \cong \mathbb{Z}$.

In summary, the first few homotopy groups of U are:

- $\pi_0 U = *$
- $\pi_1 U = \mathbb{Z}$
- $\pi_2 U = 0$
- $\pi_3 U = \mathbb{Z}$. \square
Problem 2. Let \((X, e)\) be a pointed space. The **James construction** on \(X\) is the pointed space obtained by taking words in the elements of \(X\) and declaring that \(e\) is a unit. Formally, it is the quotient space:

\[
J(X) := \bigsqcup_{k \geq 1} X^k/\sim
\]

where \(\sim\) is the equivalence relation generated by identifications of the form:

\[
(x_1, \ldots, x_{i-1}, e, x_{i+1}, \ldots, x_k) \sim (x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_k).
\]

a. Show that \(J(X)\) is a topological monoid (under concatenation of words).

Solution. \(J(X)\) under concatenation of words is the free monoid on the underlying pointed set of \((X, e)\). It remains to check that it is a topological monoid, i.e. that the multiplication map

\[
\mu: J(X) \times J(X) \to J(X)
\]

is continuous. Note that the unit map \(* \to J(X)\) is automatically continuous.

The multiplication map on \(J(X)\) is induced from the multiplication on the free semigroup \(\bigsqcup_{k \geq 1} X^k\) on \(X\), i.e. before declaring that \(e \in X\) is a unit. This is illustrated in the commutative diagram

\[
\begin{tikzcd}
(\bigsqcup_{n \geq 1} X^n) \times (\bigsqcup_{m \geq 1} X^m) \arrow[r, \mu] \arrow[d, q \times q] & (\bigsqcup_{k \geq 1} X^k) \arrow[d, q]
\arrow[r, \mu] & J(X) \times J(X) \arrow[r, \mu] & J(X)
\end{tikzcd}
\]

where \(q: \bigsqcup_{k \geq 1} X^k \to J(X)\) denotes the quotient map.

In convenient \textbf{Top} (say, compactly generated weakly Hausdorff spaces), a product of two quotient maps is still a quotient map, so that \(q \times q\) is a quotient map. Therefore, to prove continuity of the bottom map \(\mu\), it suffices to prove continuity of the top map \(\mu\).

In naive \textbf{Top} as well as in convenient \textbf{Top}, the functor \(X \times -\) preserves arbitrary coproducts. Therefore, the top map \(\mu\) is naturally isomorphic to the top map in the commutative diagram:

\[
\begin{tikzcd}
\bigsqcup_{n,m \geq 1} X^n \times X^m \arrow[r, \mu] \arrow[d, \mu_{n,m}] & \bigsqcup_{k \geq 1} X^k \arrow[u, \mu_{n,m}]
\arrow[r, \mu] & \bigsqcup_{n,m \geq 1} X^{n+m}
\end{tikzcd}
\]

The map \(\bigsqcup_{n,m} \mu_{n,m}\) is continuous (in fact a homeomorphism) since each \(\mu_{n,m} X^n \times X^m \to X^{n+m}\) is continuous (in fact a homeomorphism). The upward map

\[
\bigsqcup_{n,m \geq 1} X^{n+m} \to \bigsqcup_{k \geq 1} X^k
\]

is continuous, since its restriction to any summand \(X^{n+m} \to \bigsqcup_{k \geq 1} X^k\) is continuous (being just a summand inclusion). \(\square\)
b. Let M be a topological monoid and $f: X \to M$ a pointed map. Show that there is a unique continuous map of monoids $\tilde{f}: J(X) \to M$ making the diagram

$$
\begin{array}{ccc}
X & \xrightarrow{f} & M \\
\downarrow{\iota_1} & & \downarrow{\tilde{f}} \\
J(X) \\
\end{array}
$$

commute. Here $\iota_1: X \to J(X)$ denotes the canonical “inclusion of single-letter words”, i.e. the composite

$$
X = X^1 \hookrightarrow \coprod_{k \geq 1} X^k \to J(X).
$$

Solution. Since $J(X)$ is the free monoid on the underlying pointed set (X,e), there is a unique map of monoids $\tilde{f}: J(X) \to M$ making the diagram commute. Explicitly, it is given by

$$
\tilde{f}(x_1, x_2, \ldots, x_n) = f(x_1)f(x_2)\ldots f(x_n)
$$

which is indeed well defined since f is pointed, that is, $f(e) = 1_M$.

It remains to show that \tilde{f} is continuous. Since $J(X)$ has a quotient topology, it suffices to show that the composite

$$
\begin{array}{ccc}
\coprod_{n \geq 1} X^n & \xrightarrow{q} & J(X) \\
\downarrow{q} & & \downarrow{\tilde{f}} \\
J(X) & \xrightarrow{\tilde{f} \circ q} & M \\
\end{array}
$$

is continuous. But restricted to each summand X^n, the composite $\tilde{f} \circ q|_{X^n}: X^n \to M$ is the map given by

$$
\tilde{f} \circ q(x_1, x_2, \ldots, x_n) = f(x_1)f(x_2)\ldots f(x_n)
$$

which is the composite

$$
\begin{array}{ccc}
X^n & \xrightarrow{f^n} & M^n \\
& & \xrightarrow{\mu_n} M \\
\end{array}
$$

of two continuous maps. Here $\mu_n: M^n \to M$ is the multiplication map of n inputs, which is unambiguously defined since M is strictly associative, and moreover μ_n is continuous.

Upshot. This shows that $J(X)$ is in fact the free topological monoid on X. In other words, let $U: \textbf{TopMon} \to \textbf{Top}_*$ denote the forgetful functor from topological monoids to pointed spaces. Then the functor $J: \textbf{Top}_* \to \textbf{TopMon}$ is left adjoint to U, and $\iota_1: X \to J(X)$ is the unit map of the adjunction.
Definition. Let \((X,x_0)\) be a pointed space. The space of **Moore loops** \(\Omega_M X\) in \(X\) is the space of pairs \((\gamma, \tau)\) with \(\tau \in [0, \infty)\) and \(\gamma: [0, \tau] \to X\) a loop at the basepoint, i.e. a continuous map satisfying \(\gamma(0) = \gamma(\tau) = x_0\). It is topologized as the subspace:

\[
\Omega_M X = \{ (\gamma, \tau) \in \text{Map} ([0, \infty), X) \times [0, \infty) \mid \gamma(0) = x_0 \text{ and } \gamma(t) = x_0 \text{ for all } t \geq \tau \}
\subseteq \text{Map} ([0, \infty), X) \times [0, \infty).
\]

The basepoint of \(\Omega_M X\) is the “instantaneous loop” \(c_0 := (\gamma, 0)\).

Concatenation of Moore loops is defined as follows: \((\gamma_1, \tau_1) \ast (\gamma_2, \tau_2) \in \Omega_M X\) is the Moore loop \((\gamma, \tau_1 + \tau_2)\) given by

\[
\gamma(t) = \begin{cases}
\gamma_1(t) & \text{if } 0 \leq t \leq \tau_1 \\
\gamma_2(t - \tau_1) & \text{if } \tau_1 \leq t \leq \tau_1 + \tau_2
\end{cases}
\]

also denoted \(\gamma = \gamma_1 \ast_M \gamma_2\) by abuse of notation.

Concatenation makes \(\Omega_M X\) into a (strict) monoid with unit \(c_0\), and moreover one can check that it is a topological monoid, i.e. the concatenation map

\[
\ast: \Omega_M X \times \Omega_M X \to \Omega_M X
\]

is continuous.
Problem 3.

a. Show that the usual loop space ΩX and the Moore loop space $\Omega_M X$ are naturally homotopy equivalent, by an equivalence $\varphi: \Omega X \cong \Omega_M X$ which is moreover an H-map, i.e. such that the diagram

$$
\begin{array}{ccc}
\Omega X \times \Omega X & \xrightarrow{\varphi \times \varphi} & \Omega_M X \times \Omega_M X \\
\text{concatenation} & & \text{concatenation} \\
\Omega X & \xrightarrow{\varphi} & \Omega_M X
\end{array}
$$

commutes up to homotopy.

Solution. Define $\varphi: \Omega X \to \Omega_M X$ by

$$
\varphi(\gamma) = (\gamma, 1)
$$

where $\gamma: [0, 1] \to X$ is a loop in X based at x_0, with standard parametrization by the unit interval. Clearly φ is continuous, and is natural in X.

Note that φ is not a pointed map, but it does send the basepoint to the basepoint component.

Define $\psi: \Omega_M X \to \Omega X$ by

$$
\psi(\gamma, \tau) = \gamma_{\tau}
$$

where the latter denotes the loop $\gamma_{\tau}: [0, 1] \to X$ rescaled by a factor of τ:

$$
\gamma_{\tau}(t) := \gamma(\tau t).
$$

Clearly ψ is continuous, and is natural in X.

One composite is the identity, namely $\psi \varphi = \text{id}_{\Omega X}: \Omega X \to \Omega X$.

The other composite $\varphi \psi: \Omega_M X \to \Omega_M X$ is homotopic to the identity, via the homotopy

$$
H(\gamma, \tau, s) = \left(\gamma((1-s)+s\tau), \frac{\tau}{(1-s)+s\tau}\right)
$$

for $s \in [0, 1]$. Indeed, H is continuous and satisfies

$$
H(\gamma, \tau, 0) = (\gamma_1, \tau) = (\gamma, \tau)
$$

$$
H(\gamma, \tau, 1) = (\gamma_\tau, 1) = \varphi \psi(\gamma, \tau).
$$

It remains to show that $\varphi: \Omega X \to \Omega_M X$ preserves concatenation up to homotopy. Let $\alpha, \beta \in \Omega X$. The two ways of going around the diagram (1) yield:

$$
\varphi(\alpha \ast \beta) = (\alpha \ast \beta, 1)
$$

$$
\varphi(\alpha) \ast \varphi(\beta) = (\alpha, 1) \ast (\beta, 1)
$$

$$
= (\alpha \ast_{M} \beta, 2).
$$
Consider the homotopy $G : \Omega X \times \Omega X \times I \to \Omega M X$ given by
\[G(\alpha, \beta, s) = \left(\frac{\alpha_{1+s}}{1+s}, \frac{1}{1+s} \right) * \left(\frac{\beta_{1+s}}{1+s}, \frac{1}{1+s} \right). \]

Then G is indeed continuous, and it satisfies
\[G(\alpha, \beta, 0) = (\alpha_1, 1) * (\beta_1, 1) = \varphi(\alpha) * \varphi(\beta) \]
\[G(\alpha, \beta, 1) = \left(\alpha_2, \frac{1}{2} \right) * \left(\beta_2, \frac{1}{2} \right) = (\alpha * \beta, 1) = \varphi(\alpha * \beta). \]
b. Deduce that the canonical map $\eta: X \to \Omega \Sigma X$ naturally extends up to homotopy to an H-map $\tilde{\eta}: J(X) \to \Omega \Sigma X$. Here $J(X)$ denotes the James construction on X (c.f. Problem 2). “Extension up to homotopy” means that $\tilde{\eta}$ makes the following diagram commute up to homotopy:

\[
\begin{array}{ccc}
X & \xrightarrow{\eta} & \Omega \Sigma X \\
\downarrow{\iota_1} & & \searrow{\tilde{\eta}} \\
J(X) & & \\
\end{array}
\]

Solution. Consider the diagram

\[
\begin{array}{ccc}
X & \xrightarrow{\eta} & \Omega \Sigma X & \xrightarrow{\varphi} & \Omega_M \Sigma X \\
\downarrow{\iota_1} & & \searrow{\psi} & & \nearrow{\eta'} \\
J(X) & & \end{array}
\]

Since $\Omega_M \Sigma X$ is a (strict) topological monoid, there is a unique continuous map of monoids $\eta': J(X) \to \Omega_M \Sigma X$ satisfying $\eta' \circ \iota_1 = \varphi \circ \eta$.

Take $\tilde{\eta} := \psi \circ \eta'$. Since $\psi: \Omega_M X \xrightarrow{\simeq} \Omega X$ is a homotopy equivalence, the left triangle commutes up to homotopy:

\[
\tilde{\eta} \circ \iota_1 = \psi \circ \eta' \circ \iota_1 \\
= \psi \circ \varphi \circ \eta \\
\simeq \text{id}_{\Omega \Sigma X} \circ \eta \\
= \eta.
\]

Since η' is a map of monoids, it is in particular an H-map. Since ψ is also an H-map, the composite $\tilde{\eta} = \psi \circ \eta'$ is also an H-map.

Since φ and ψ are both natural in X, then so is $\eta': J(X) \to \Omega \Sigma X$.

\square