4. Basic Concepts

In this section we take \(X \) to be any infinite set of individuals that contains \(\mathbb{R} \) as a subset and we assume that \(*: U(X) \rightarrow U(*X) \) is a proper nonstandard extension.

The purpose of this section is to introduce three important concepts that are characteristic of arguments using nonstandard analysis: \textit{overspill} and \textit{underspill} (consequences of certain sets in \(U(*X) \) not being internal); \textit{hyperfinite sets} and \textit{hyperfinite sums} (combinatorics of hyperfinite objects in \(U(*X) \)); and \textit{saturation}.

Overspill and underspill

4.1. \textbf{Lemma.} The sets \(\mathbb{N} \), \(\mu(0) \), and \(\text{fin}(\mathbb{R}) \) are external in \(U(*X) \).

\textit{Proof.} Every bounded nonempty subset of \(\mathbb{N} \) has a maximum element. By transfer we conclude that every bounded nonempty internal subset of \(*\mathbb{N} \) has a maximum element. Since \(\mathbb{N} \) is a subset of \(*\mathbb{N} \) that is bounded above (by any infinite element of \(*\mathbb{N} \)) but that has no maximum element, it follows that \(\mathbb{N} \) is external.

Every bounded nonempty subset of \(\mathbb{R} \) has a least upper bound. By transfer we conclude that every bounded nonempty internal subset of \(*\mathbb{R} \) has a least upper bound. Since \(\mu(0) \) is a bounded nonempty subset of \(*\mathbb{R} \) that has no least upper bound, it follows that \(\mu(0) \) is external.

If \(\text{fin}(\mathbb{R}) \) were internal, so would \(\mathbb{N} = \text{fin}(\mathbb{R}) \cap *\mathbb{N} \) be internal. Since \(\mathbb{N} \) is external, it follows that \(\text{fin}(\mathbb{R}) \) is also external. \(\square \)

4.2. \textbf{Proposition.} (Overspill and Underspill Principles) Let \(A \) be an internal set in \(U(*X) \).

(1) (For \(*\mathbb{N} \)) \(A \) contains arbitrarily large elements of \(\mathbb{N} \) if and only if \(A \) contains arbitrarily small infinite elements of \(*\mathbb{N} \).

(2) (For \(\mu(0) \)) \(A \) contains arbitrarily large positive infinitesimals from \(*\mathbb{R} \) if and only if \(A \) contains finite elements from \(*\mathbb{R} \) whose standard parts are arbitrarily small \(> 0 \).

(3) (For \(\text{fin}(\mathbb{R}) \)) \(A \) contains arbitrarily large positive finite elements of \(*\mathbb{R} \) if and only if \(A \) contains arbitrarily small positive infinite elements of \(*\mathbb{R} \).
Proof. (1) We use the fact that \mathbb{N} is external, and argue by contradiction in both directions.

(\Rightarrow) Suppose A contains arbitrarily large elements of \mathbb{N} and there exists an infinite element H of $^*\mathbb{N}$ such that every $a \in A \cap ^*\mathbb{N}$ satisfying $a < H$ is in \mathbb{N}. We conclude

$$\mathbb{N} = \{ b \in ^*\mathbb{N} \mid \exists a \in A (a \in ^*\mathbb{N} \land b < a \land a < H) \}.$$

Using the Internal Definition Principle we have that \mathbb{N} is internal, which is a contradiction.

(\Leftarrow) Suppose A contains arbitrarily small infinite elements of $^*\mathbb{N}$ and there exists $k \in \mathbb{N}$ such that every element of $A \cap \mathbb{N}$ is $\leq k$. We conclude

$$\mathbb{N} = \{ b \in \mathbb{N} \mid \forall a \in A ((a \in ^*\mathbb{N} \land k < a) \rightarrow b < a) \}.$$

Again using the Internal Definition Principle we have proved the false statement that \mathbb{N} is internal.

(2) and (3) Exercises. The proofs are similar to the proof of (1). □

4.3. Remark. Let A be an internal set in $U(^*X)$. There are many variants of the principles stated in the previous result that are easily derived from what is stated there. For example:

(4) If A contains $\{ n \in \mathbb{N} \mid k \leq n \}$ for some $k \in \mathbb{N}$, then there exists an infinite element H of $^*\mathbb{N}$ such that $A \supseteq \{ c \in ^*\mathbb{N} \mid k \leq c \leq H \}$.

(5) Let $r \in \mathbb{R}$. If A contains $\mu(r)$, then there exists $\delta > 0$ in \mathbb{R} such that $A \supseteq ^*(r - \delta, r + \delta)$.

Hyperfinite sets

A set x is finite if there exists $n \in \mathbb{N}$ and a 1-1 function f from $\{ m \in \mathbb{N} \mid m < n \}$ onto x. Moreover, in this case n is unique and it is called the cardinality or size of x. When x is a finite set and n is the cardinality of x, we write $n = \operatorname{card}(x)$ or $n = |x|$.

4.4. Definition. Let A be a set in $U(^*X)$. We say A is hyperfinite if there exists $H \in ^*\mathbb{N}$ and an internal 1-1 function from $\{ u \in ^*\mathbb{N} \mid u < H \}$ onto A.

Note that a hyperfinite set is necessarily internal, since it is the range of an internal function.
4.5. **Remark.** If we fix \(n \geq 1 \), then conditions such as the following are expressible in \(U(^*X) \) by \(\Delta_0 \)-formulas in which a name for \(^*U_{n+2}(X) \) occurs.

1. \(A \) is a hyperfinite set of rank \(\leq n \).
2. \(A \) is a hyperfinite set of rank \(\leq n \), \(H \in ^*\mathbb{N} \), and \(H = |A| \).

The reason that \(^*U_{n+2}(X) \) needs to be mentioned in the formulas is that the internal function witnessing that \(A \) is hyperfinite will be an internal set of rank \(\leq n + 2 \) when \(A \) has rank \(\leq n \), and we need to express the existence of such a function using a bounded quantifier.

4.6. **Lemma.** If \(A \) is a hyperfinite set in \(U(^*X) \), then the \(H \in ^*\mathbb{N} \) such that there exists an internal 1-1 function from \(\{ u \in ^*\mathbb{N} \mid u < H \} \) onto \(A \) is unique.

Proof. Use the \(\Delta_0 \)-formulas discussed above and in Section 2, and the Transfer Principle. \(\square \)

4.7. **Definition.** If \(A \) is a hyperfinite set in \(U(^*X) \) and \(H \) is the unique element of \(^*\mathbb{N} \) such that there exists an internal 1-1 function from \(\{ u \in ^*\mathbb{N} \mid u < H \} \) onto \(A \), then \(H \) is called the (internal) cardinality of \(A \) and we write \(H = \text{card}(A) \) or \(H = |A| \).

An important example of a hyperfinite set is

\[
\{ \frac{m}{H} \mid m \in ^*\mathbb{N} \land m \leq H \}
\]

where \(H \) is an infinite element of \(^*\mathbb{N} \). The internal cardinality of this set is \(H + 1 \) and the internal 1-1 function witnessing that the set is hyperfinite takes \(m \) to \(m/H \) for \(m \in \{0, 1, \ldots, H\} \).

4.8. **Notation.** For any set \(A \) we let \(\mathcal{P}(A) \) denote the set of all subsets of \(A \), and \(\mathcal{P}_f(A) \) will denote the set of all finite subsets of \(A \).

4.9. **Proposition.**

1. If \(a \) is a set in \(U(X) \), then \(^*\mathcal{P}(a) \) (respectively, \(^*\mathcal{P}_f(a) \)) is the set of all internal subsets of \(^*a \) (respectively, the set of all hyperfinite subsets of \(^*a \)).
2. If \(A \) is an internal set in \(U(^*X) \), then the set of all hyperfinite subsets of \(A \) is internal.

Proof. (1) Apply the Standard Definition Principle to the \(\Delta_0 \)-formula \(\neg I(x) \land \forall y \in x \ (y \in a) \). Note that if \(A \) has rank \(n \), then every \(x \) satisfying this formula has rank at most \(n \), so this Principle applies.
(2) Suppose A has rank n. Consider the Δ_0-formula $\varphi(x, y, u, v, w)$ such that $\varphi(x, y, N, <, U_{n+2}(X))$ formalizes the condition “$x \subseteq y$ and there exists a 1-1 function $f \in U_{n+2}(X)$ whose range is x and whose domain is $\{0, 1, \ldots, H\}$ for some $H \in \mathbb{N}$”. We apply the Internal Definition Principle to the formula $\varphi(x, A, *N, *, *U_{n+2}(X))$, whose meaning is: “$x \subseteq y$ and there exists a 1-1 function $f \in *U_{n+2}(X)$ whose range is x and whose domain is $\{0, 1, \ldots, H\}$ for some $H \in \mathbb{N}$”. Such functions are necessarily internal, which implies that any x satisfying this formula will be a hyperfinite subset of A. Moreover, if x is a hyperfinite subset of A, then the internal function witnessing that x is hyperfinite will indeed be an element of $*U_{n+2}(X)$. Thus $\{x \in U(*X) \mid x$ is hyperfinite and $x \subseteq A\}$ is equal to $\{x \in U(*X) \mid x$ is internal and $\varphi(x, A, *N, *, *U_{n+2}(X))\}$ and this set is internal by the Internal Definition Principle.

4.10. Notation. For any internal set A in $U(*X)$ we let $*P(A)$ denote the set of all internal subsets of A, and $*P_f(A)$ will denote the set of all hyperfinite subsets of A. If $A = *a$ for some set $a \in U(X)$, then we have two notations for the same sets: $*P(*a) = *(P(a))$ and also $*P_f(*a) = *(P_f(a))$.

Next we give a list of some basic properties of hyperfinite sets.

4.11. Proposition (Properties of hyperfinite sets). Let A, B be internal sets and $f : A \to B$ an internal function.

(1) Assume B is hyperfinite and f is 1-1. Then A is hyperfinite and $|A| \leq |B|$; moreover, $|A| = |B|$ if and only if f is surjective. (In particular these hold when B is hyperfinite and A is an internal subset of B.)

(2) Assume A is hyperfinite and f is surjective. Then B is hyperfinite and $|B| \leq |A|$; moreover, $|A| = |B|$ if and only if f is injective.

(3) Assume A, B are both hyperfinite. Then $A \cup B$ is hyperfinite and $|A \cup B| + |A \cap B| = |A| + |B|$.

(4) Assume A, B are both hyperfinite. Then $A \times B$ is hyperfinite and $|A \times B| = |A| \cdot |B|$.

(5) Assume A is hyperfinite. Then $*P(A)$ is hyperfinite and $|*P(A)| = 2^{|A|}$. (Here $2^{|A|}$ is taken to be $*E(|A|)$ where $E : \mathbb{N} \to \mathbb{N}$ is the function given by $E(n) = 2^n$ for all $n \in \mathbb{N}$.)

Proof. Exercises. Results like these are easily proved by formulating the corresponding properties of finite sets in $U(X)$ using Δ_0-formulas (in which $U_k(X)$ occurs for suitable k), applying the Transfer Principle, and then
interpreting the meaning of the resulting formula in the nonstandard extension.

Hyperfinite sums

Suppose \(A \) is a hyperfinite set in \(U(*X) \) and \(f \) is an internal function whose domain contains \(A \) and whose range is in \(*\mathbb{R} \). We want to give a meaning to the expression “the sum of \(f(x) \) as \(x \) ranges over \(A \)”, which we will denote by

\[
\sum_{x \in A} f(x).
\]

Fix \(n \geq 1 \). Let \(\sum \) denote the function in \(U(X) \) whose domain is the set of all \((a, f)\) such that \(a \) is a finite set of rank \(\leq n \) and \(f \) is a function of rank \(\leq n + 2 \) whose domain contains \(a \) and whose range is contained in \(\mathbb{R} \), and whose value at such an \((a, f)\) is given by

\[
\sum (a, f) = \sum_{x \in a} f(x).
\]

It is easy to see that the domain of the nonstandard extension \(*\sum\) is the set of all \((A, f)\) such that \(A \) is a hyperfinite set of rank \(\leq n \) and \(f \) is an internal function of rank \(\leq n+2 \) whose domain contains \(A \) and whose range is contained in \(*\mathbb{R} \). For any such \((A, f)\) we make the definition

\[
\sum_{x \in A} f(x) = *\sum (A, f).
\]

It is easy to check, using the Transfer Principle, that this definition does not depend on the rank bound \(n \).

4.12. Proposition (Properties of hyperfinite sums). Suppose \(A, B \) are hyperfinite sets and \(f, g \) are internal functions whose domains contain \(A \) and \(B \) and whose ranges are contained in \(*\mathbb{R} \). Then

1. For any \(u \in (*\mathbb{R}, \sum_{x \in A} uf(x) = u \sum_{x \in A} f(x).) \)
2. \(\sum_{x \in A} (f(x) + g(x)) = \sum_{x \in A} f(x) + \sum_{x \in A} g(x).) \)
3. If \(A \cap B = \emptyset \), then \(\sum_{x \in A \cup B} f(x) = \sum_{x \in A} f(x) + \sum_{x \in B} f(x).) \)
4. If \(f(x) \leq g(x) \) for all \(x \in A \), then \(\sum_{x \in A} f(x) \leq \sum_{x \in A} g(x).) \)

Proof. Exercises. Bound the ranks of \(A, B, f, g \) by \(n \) and express properties of the function \(\sum(a, f) \) by appropriate \(\Delta_0 \)-formulas in which \(U_{n+2}(X) \) occurs. Check that the Transfer Principle yields properties of the nonstandard extension \(*\sum\) that correspond to the items in the Proposition. \(\square \)
Saturation

Fix an uncountable cardinal number κ.

Recall that a collection of sets \mathcal{F} is said to have the finite intersection property (FIP) if every finite subcollection of \mathcal{F} has nonempty intersection.

4.13. Definition. The nonstandard extension $*: U(X) \rightarrow U(\ast X)$ is said to be κ-saturated if, whenever I is a set of cardinality $< \kappa$ and $\{A_i \mid i \in I\}$ is a collection of internal sets with the finite intersection property, then $\bigcap\{A_i \mid i \in I\} \neq \emptyset$.

4.14. Theorem (Existence of κ-saturated nonstandard extensions). For every infinite set of individuals X there exists a κ-saturated nonstandard extension $*: U(X) \rightarrow U(\ast X)$. Every such nonstandard extension is proper.

Proof. Using basic model theory we may obtain a κ-saturated L-structure M and an elementary embedding F of $(U(X), \in, X)$ into M. Apply the Mostowski collapsing construction as in the proof of Theorem 3.4 to obtain a nonstandard extension $*: U(X) \rightarrow U(\ast X)$ with $\ast X = I^M$. We will show that this nonstandard extension is κ-saturated. Recall that this construction uses the substructure M_f of all strongly well-founded elements of M and an embedding G of M_f into $U(\ast X)$. The range of G is exactly the transitive substructure of $U(\ast X)$ consisting of the internal elements.

Suppose I is a set of cardinality less than κ and $\{A_i \mid i \in I\}$ is a collection of internal sets in $U(\ast X)$ that has the finite intersection property. For each $i \in I$, let $m_i \in M_f$ be such that $G(m_i) = A_i$. We consider the $L(M)$-formulas xEm_i for $i \in I$. The fact that $\{A_i \mid i \in I\}$ has the FIP ensures that $\{xEm_i \mid i \in I\}$ is finitely satisfiable in M. Since M is κ-saturated and $\text{card}(I) < \kappa$, there exists $m \in M$ such that mE^Mm_i holds for all $i \in I$. It follows that m is strongly well founded, and we see that $G(m)$ is an element of the intersection of the collection $\{A_i \mid i \in I\}$. Therefore we have shown that the nonstandard extension $*: U(X) \rightarrow U(\ast X)$ is κ-saturated.

Finally we show that any κ-saturated extension is proper. Let C be any countable, infinite subset of X and consider the internal sets $A_c = \{x \in \ast X \mid x \neq c\}$ for $c \in C$. Since C is infinite, this collection of sets has the FIP. Since C is countable and the nonstandard extension is κ-saturated (with $\kappa > \omega$), we conclude that $\bigcap\{A_c \mid c \in C\}$ is nonempty. That is, there exists
$u \in \ast C$ that is distinct from c for all $c \in C$, and hence the nonstandard extension is proper. \hfill \Box

4.15. Proposition (Comprehension principle).

(Assume κ-saturation.) Let A, B be internal sets in $U(\ast X)$ and let S be a subset of A with $\text{card}(S) < \kappa$. For every function $\alpha : S \to B$, there exists an internal function $f : A \to B$ whose restriction to S is α.

Proof. Assume A, B, S, α are as in the hypotheses. Let a_0 be a fixed element of A. For each $x \in S$ let

$$A_x = \{ g \mid g : A \to B \text{ is internal and } g(x) = \alpha(x) \}.$$

Each A_x is an internal set. Moreover, the collection of sets $\{ A_x \mid x \in S \}$ has the finite intersection property. Indeed, for each finite set $F \subseteq S$ the function $g : A \to B$ defined by

$$g(a) = \begin{cases} \alpha(a) & a \in F \\ \alpha(a_0) & \text{otherwise} \end{cases}$$

is internal and is an element of every A_x for $x \in F$. Using κ-saturation we conclude that $\bigcap_{x \in S} A_x$ contains some element g, which is necessarily an internal function $g : A \to B$ that extends α. \hfill \Box

The next result formulates the κ-saturation condition in a way that will be useful in many situations.

4.16. Proposition. (Assume κ-saturation.) Let I, J be index sets, each of cardinality $< \kappa$. For each $i \in I$ and $j \in J$ let A_i and B_j be internal sets, and assume that all of the sets in $\{ A_i \mid i \in I \} \cup \{ B_j \mid j \in J \}$ have rank $\leq n$ in $U(\ast X)$. Then the following two conditions are equivalent:

(1) $\bigcup \{ A_i \mid i \in I \} \supseteq \bigcap \{ B_j \mid j \in J \}$.

(2) There exist finite sets $I_0 \subseteq I$ and $J_0 \subseteq J$ such that

$$\bigcup \{ A_i \mid i \in I_0 \} \supseteq \bigcap \{ B_j \mid j \in J_0 \}.$$

Proof. Let the families $(A_i \mid i \in I)$ and $(B_j \mid j \in J)$ be as in the hypotheses. Note that every A_i and every B_j is a subset of $\ast U_n(X)$. The equivalence between (1) and (2) follows immediately from an application of κ-saturation to the family of internal sets consisting of $\ast U_n(X) \setminus A_i$ for $i \in I$ and B_j for $j \in J$. Note that (1) holds iff the intersection of these sets is empty. \hfill \Box
4.17. Example. (Assume ω_1-saturation.) Let A be a hyperfinite set in $U(\ast X)$ and let \mathcal{A} be the boolean algebra of all internal subsets of A. For each $B \in \mathcal{A}$ define
\[\mu(B) = \text{st}\left(\frac{|B|}{|A|}\right). \]
Note that this standard part is well defined because $0 \leq |B| \leq |A|$. Using properties of the standard part and of internal cardinalities of hyperfinite sets, it is easy to show that μ is a finitely additive probability measure on \mathcal{A}.

Moreover, because of ω_1-saturation, we have that μ satisfies the hypotheses of the Carathéodory Extension Theorem on \mathcal{A}. That is if $\left\{A_n \mid n \in \mathbb{N}\right\}$ is a descending sequence in \mathcal{A} and $A \in \mathcal{A}$ is equal to $\bigcap\{A_n \mid n \in \mathbb{N}\}$, then $\mu(A_n)$ converges to $\mu(A)$ as $n \to \infty$. Indeed, this is true in a very strong way: using Proposition 4.16, there exists $k \in \mathbb{N}$ such that $A_n = A$ for all $n \geq k$ in \mathbb{N}.

Therefore we conclude that μ extends to a σ-additive probability measure defined on the σ-algebra of subsets of A generated by A. This is an example of a Loeb measure, which play an important role in many applications of nonstandard analysis. These measures will be extensively studied later in the course.

4.18. Exercises. (Assume κ-saturation, $\kappa \geq \omega_1$.)
1. Suppose S, T are subsets of $\ast \mathbb{R}$ with $S < T$. (That is, for any $x \in S$ and $y \in T$, we have $x < y$.) Suppose further that S and T have cardinality $< \kappa$. Then there exists $a \in \ast \mathbb{R}$ such that $S < a < T$. In particular, if each element of T is positive infinite, then there exists a positive infinite a with $a < T$. (Take $S = \mathbb{N}$).
2. If A is an infinite internal set, then A has cardinality $\geq \kappa$.
3. Suppose $\left\{A_n \mid n \in \mathbb{N}\right\}$ is a sequence of distinct internal sets. If $A_0 \subset A_1 \subset \cdots \subset A_n \subset \cdots$, then $\bigcup\{A_n \mid n \in \mathbb{N}\}$ is external. Likewise, if $A_0 \supset A_1 \supset \cdots \supset A_n \supset \cdots$, then $\bigcap\{A_n \mid n \in \mathbb{N}\}$ is external.