Spline Wavelets, Finite Element Wavelets, and Wavelets with Composite Dilation

Tian-Xiao He (Discussed partially with Guido Weiss and Edward Wilson (WU, St. Louis))

Dept. Math. Illinois Wesleyan University

AMS 2009 Spring Central Sectional Meeting
Special Session on Time, Scale and Frequency Methods in Harmonic Analysis
March 27, 2009
Construction of Multivariate Wavelets on Arbitrary Triangulation

- Haar-type non-separable constant wavelets: “twin dragon,” Belogay and Wang [99], Flaherty and Wang [99], and Gröchenig and Madych [92]; wavelet with composite dilations, Krishtal, Robinson, Weiss, and Wilson [08]

- Continuous piecewise linear wavelet: Yserentant [86], Vassilevski and Wang [97], Stevenson [97,98, H^1-stable], Liu [06], Floater and Quak [99,00, semi-orthogonal], Hardin and Hong [03, orthogonal on type-1 triangulation]

- C^1 quadratic splines and spline wavelets: Powell-Sabin [77], Chui and He[90], Chui, Chui, and He[93], Chui and Jiang [04]; Oswald [92, not H^2-stable], Davydov and Petrushev [03,05, H^μ-stable, $\mu \in (1,5/2)$] ($|f|_{H^\mu(\mathbb{R}^d)} := \left(\int_{\mathbb{R}^d} |\hat{f}(\xi)|^2 |\xi|^{2\mu} d\xi\right)^{1/2}$ $< \infty$), Windmolders, Vanraes, Dierckx, and Bultheel [03].
Splines and Elements, Spline Wavelets, Wavelets with Composite Dilations

▶ Splines and their BB-expressions: Farin [88,90,93], Chui [87], etc.

▶ Characterization of compactly supported refinable splines: Lawton, Lee, and Shen [95], Sun [96], Goodman [98], Guan and He [09], etc.

▶ Spline wavelets: Chui and Wang [92,93], Chui, Stöckler, and Ward [92], Jia and Micchelli [91], Riemenschneider and Shen [92], Lorentz and Oswald [00, Sobolev spaces], Jia, Wang, and Zhou [03], Jia and Liu [08], etc.

▶ Wavelets with composite dilations: Guo, Labate, Lim, Weiss, and Wilson [04, 06, 06], etc.
BB-expressions of polynomials and splines-1

Let $x^0, \ldots x^d \in \mathbb{R}^d$, $d \geq 1$, $x^i = (x^i_1, \ldots, x^i_d)$ and consider the convex hull

$$T_d := \langle x^0, \ldots, x^d \rangle = \left\{ \sum_{i=0}^{d} \alpha_i x^i : \sum_{i=0}^{d} \alpha_i = 1, \alpha_i \geq 0 \right\}.$$

This convex hull is called an d-simplex if its signed volume $Vol_d \langle x^0, \ldots, x^d \rangle$ is nonzero. Suppose that $\langle x^0, \ldots, x^d \rangle$ is an d-simplex. Then any $x \in \mathbb{R}^d$ can be identified by an $(d + 1)$-tuple $\lambda = (\lambda_0, \ldots, \lambda_d)$, the barycentric coordinates of x relative to the d-simplex $\langle x^0, \ldots, x^d \rangle$, where

$$\lambda_i = \lambda_i(x) = \frac{Vol_d \langle x^0, \ldots, x^{i-1}, x, x^{i+1}, \ldots, x^d \rangle}{Vol_d \langle x^0, \ldots, x^d \rangle}.$$
BB-expressions of polynomials and splines-2

Thus, each $\lambda_i = \lambda_i(x)$ is a linear polynomial in x with $
abla \sum_{i=0}^{d} \lambda_i = 1$, and if $x \in \langle x^0, \ldots, x^d \rangle$, then $\lambda_i \geq 0$.

For any $b = (\beta_0, \ldots, \beta_d) \in \mathbb{Z}_{d+1}^d$, and $n \in \mathbb{Z}_+$, we will use the usual multivariate notation $\lambda^b = \lambda^{\beta_0} \cdots \lambda^{\beta_d}$, $b! = \beta_0! \cdots \beta_d!$, and $|b| = \beta_0 + \cdots + \beta_d$. Hence,

$$\phi^n_b(\lambda) := \frac{n!}{b!} \lambda^b$$ (1)

is a polynomial in $\pi^d_{|\beta|}$, the space of all polynomials in d variables of order $|\beta| + 1$, or degree at most $|\beta|$.
BB-expressions of polynomials and splines-3

With any set \(\{a^n_\beta\} = \{a^n_\beta\}_{\beta \in \mathbb{Z}_+^{d+1}, |\beta| = n} \subset \mathbb{R} \) one may associate the polynomial

\[
p_n(x) = B_n[\{a^n_\beta\}; \lambda] = \sum_{|\beta|=n} a^n_\beta \phi^n_\beta(\lambda), \tag{2}
\]

which is called a \textit{Bernstein-Bézier polynomial (BB polynomial)} of total degree \(n \) relative to the \(d \)-simplex \(\langle x^0, \ldots, x^d \rangle \). In addition, \(\{a^n_\beta : |\beta| = n\} \) shown as in (2) is called the set of \textit{Bézier coefficients} of the polynomial \(p_n \). The piecewise linear interpolant to the points \((\beta/n, a^n_\beta) \) is said to be the \textit{Bézier net} or \textit{control net}. and is displayed schematically in Figure 1 for the case of \(n = 2 \) and \(d = 2 \).
BB-expressions of polynomials and splines-4

Denote

\[D_y = \sum_{i=1}^{d} y_i \frac{\partial}{\partial x_i}, \]

where \(x = (x_1, \ldots, x_d) \) and \(y = (y_1, \ldots, y_d) \). For \(y = x^i - x^j \), we denote

\[D_{ij} = D_y = D_{x^i - x^j}, \quad i \neq j. \]

By using the barycentric coordinates \(\{\lambda_\ell\}_{\ell=0}^d \) of \(x \in \mathbb{R}^d \) relative to an \(d \)-simplex \(T_d = \langle x^0, \ldots, x^d \rangle \), we can write \(x = \sum_{\ell=0}^{d} \lambda_\ell x^\ell \). If we define

\[E_i a_\alpha := a_\alpha + e^i \]

and

\[\triangle_{ij} a^n_\alpha = E_i a^n_\alpha - E_j a^n_\alpha, \]

where \(e^i = (\delta_{ij})_{j=0}^d \) denotes the \(i \)th coordinate vector in \(\mathbb{R}^{d+1} \), then

\[D_{ij} p_n = n \sum_{|\alpha|=n-1} (E_i - E_j) a^n_\alpha \phi^{n-1}_\alpha(\lambda) = n \sum_{|\alpha|=n-1} \triangle_{ij} a^n_\alpha \phi^{n-1}_\alpha(\lambda). \]

(3)
Continuous Wavelets with Composite Dilation-1

Let B be the group of order 3 generated by the matrix
\[
\rho = \frac{1}{2} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix},
\]
which is the counter-clockwise rotation by $2\pi/3$. Consider the hexagon H centered at the origin consisting of the diamonds $R_i = (v_{i0}, v_{i1}, v_{i2}, v_{i3})$, ($i = 0, 1, 2$), where v_{i0}, v_{i1}, v_{i2}, and v_{i3} are vertices of R_i, and R_0 has vertices $v_{00} = (0, 0)$, $v_{01} = (\sqrt{3}/4, -3/4)$, $v_{02} = (\sqrt{3}/2, 0)$, $v_{03} = (\sqrt{3}/4, 3/4)$.
Continuous Wavelets with Composite Dilation-2

The elements of B map R_0 onto other diamonds $R_i = \rho^i R_0$ ($i = 1, 2$). Let $C = \frac{1}{4} \begin{pmatrix} 0 & 3\sqrt{3} \\ 6 & 3 \end{pmatrix}$ and $\Gamma_0 = C\mathbb{Z}^2$. The translates of the hexagon by $\gamma \in \Gamma_0$ form a partition of \mathbb{R}^2 with the centers of the hexagons in the partition being the lattice points γ. Let $q = \begin{pmatrix} 1 \\ -\sqrt{3} \end{pmatrix}$. The MRA is now generated by the composite dilation system $\{D_q^j D_{\rho^i} T_{\gamma} : j \in \mathbb{Z}, i = 0, 1, 2, \gamma \in \Gamma_0\}$ applied to the linear scaling function $\phi(x)$ with $\phi(v_{00}) = 1$, $\phi(v_{01}) = \phi(v_{02}) = \phi(v_{03}) = 0$ (i.e., the Bézier coefficient vector of ϕ is $(1, 0, 0, 0)$). Here, the vertex v_{00} at which ϕ has value 1 is the initial vertex of diamond boundary. The space V_j are q^{-j} dilates of V_0, i.e., $V_j = D_{q^{-j}} V_0$ ($j \in \mathbb{Z}$).
Continuous Wavelets with Composite Dilation-3

The space $V_0 \subset L^2(\mathbb{R}^2)$ consists of the linear functions $\phi_i(x)$ defined on R_i ($i = 0, 1, 2$), with values at vertices of R_i as $\phi(v_{i0}) = 1$ and $\phi(v_{i1}) = \phi(v_{i2}) = \phi(v_{i3}) = 0$, and their translations defined on Γ_0-translates of the diamonds R_i ($i = 0, 1, 2$). In order to describe the space V_1 we consider the original hexagon H and, within H, the smaller hexagon $q^{-1}H$, which is the disjoint union of the diamonds $R_i = \rho^i R_0$ ($i = 0, 1, 2$) and their translations. $\Phi = [\phi_0, \phi_1, \phi_2]^T$ is refinable. The corresponding multiwavelet Ψ and the duals of the Φ and Ψ are constructed. (More details available upon request.)
Consider the hexagonal lattice \(\Delta \) in \(\mathbb{R}^2 \) defined by \(C\mathbb{Z}^2 \) with \(C = \begin{pmatrix} 1 & -1/2 \\ 0 & \sqrt{3}/2 \end{pmatrix} \). Let \(\Delta^3 \) be the type-3 refinement of \(\Delta \). We call \(\phi \in S_2^1(\Delta^3) \) a Powell-Sabin(PS) spline or macroelement. For any \(k \in \Delta \), the Hermite interpolation problem

\[
\begin{pmatrix}
\phi_{k,0}(\ell) & D_1\phi_{k,0}(\ell) & D_2\phi_{k,0}(\ell) \\
\phi_{k,1}(\ell) & D_1\phi_{k,1}(\ell) & D_2\phi_{k,1}(\ell) \\
\phi_{k,2}(\ell) & D_1\phi_{k,2}(\ell) & D_2\phi_{k,2}(\ell)
\end{pmatrix} = \delta_{k,\ell}I
\]

has a unique solution \(\Phi_k = (\phi_{k,0}, \phi_{k,1}, \phi_{k,2})^T \). And \(\{\Phi_{0,k} \equiv \Phi(x - \Gamma k) : k \in \mathbb{Z}^2\} \) is a basis of \(S_2^1(\Delta^3) \). The BB-expressions of \(\Phi_{0,i} \) (\(i = 0, 1, 2 \)) are given.
C^1 Quadratic Prewavelets with Composite Dilations-2

$\Phi_{0,k}$ is refinable with respect to the dilation matrix $q = 2I$. The refinement $\Delta_j := q^{-j}\Delta$ is the mid-edge subdivision that generates PS partition $\Delta_j^3 := q^{-j}\Delta^3$. The corresponding nested subspaces $V_j = S_2^1(\Delta_j^3) \subset L_2(\mathbb{R}^2), j \in \mathbb{Z}$, form a MRA of multiplicity 3.

- The MRA generated by applying the composite dilation system $\{D_q D_{\rho_i} T_\gamma : j \in \mathbb{Z}, i = 0, 1, 2, \gamma \in \Gamma \mathbb{Z}^2\}$ to $\Phi_{0,i}$.
- Construction of dual of dual basis with composite dilations.
- Construction of the multi-prewavelets with composite dilations. (More details available upon request.)