Time-Frequency localization of Multiband signals
AMS Meeting # 1047, Urbana, March 27, 2009

Joe Lakey (w Scott Izu)¹

March 27, 2009
Fourier transform:
\[\hat{f}(\xi) = \int_{\mathbb{R}} f(t) e^{-2\pi i t \xi} \, dt \]
Fourier transform: \(\hat{f}(\xi) = \int_{\mathbb{R}} f(t) e^{-2\pi it\xi} \, dt \)

\(P_\Sigma f(x) = (\hat{f} 1_\Sigma)^\vee(x) \); Paley-Wiener: \(PW_\Sigma = P_\Sigma(L^2(\mathbb{R})) \)
Time and frequency localization

- Fourier transform: \(\hat{f}(\xi) = \int_{\mathbb{R}} f(t) e^{-2\pi it\xi} \, dt \)
- \(P_\Sigma f(x) = (\hat{f} \, 1_\Sigma)^\vee(x) \); Paley-Wiener: \(\text{PW}_\Sigma = P_\Sigma(L^2(\mathbb{R})) \)
- Fundamental Questions Include . . . :
Time and frequency localization

- Fourier transform: \(\hat{f}(\xi) = \int_{\mathbb{R}} f(t) e^{-2\pi i t \xi} \, dt \)
- \(P_\Sigma f(x) = (\hat{f} 1_\Sigma)^\vee(x) \); Paley-Wiener: \(\text{PW}_\Sigma = P_\Sigma(L^2(\mathbb{R})) \)
- **Fundamental Questions Include . . . :**
 - Time localization of \(\text{PW}_\Sigma \)

Joe Lakey (w Scott Izu) | Time-frequency multiband
Fourier transform: \(\hat{f}(\xi) = \int_{\mathbb{R}} f(t) e^{-2\pi it\xi} \, dt \)

\[P_\Sigma f(x) = (\hat{f} \mathbb{1}_\Sigma) \vee (x); \text{ Paley-Wiener: } \text{PW}_\Sigma = P_\Sigma(\mathbb{L}^2(\mathbb{R})) \]

Fundamental Questions Include . . .:

- Time localization of \(\text{PW}_\Sigma \)
 - \(Q_s f(x) = f(x) \mathbb{1}_s(x); \)

Especially, \(s \) an interval
Fourier transform: \(\hat{f}(\xi) = \int_{\mathbb{R}} f(t) e^{-2\pi it\xi} \, dt \)

\[P_{\Sigma} f(x) = (\hat{f} 1_{\Sigma})^\check{\check{\cdot}}(x); \text{ Paley-Wiener: } PW_{\Sigma} = P_{\Sigma}(L^2(\mathbb{R})) \]

Fundamental Questions Include . . . :

- Time localization of \(PW_{\Sigma} \)
 - \(Q_s f(x) = f(x) 1_S(x); \)
Fourier transform:
\[\hat{f}(\xi) = \int_{\mathbb{R}} f(t) e^{-2\pi i t \xi} \, dt \]

\[P_{\Sigma} f(x) = (\hat{f} \, \mathbb{1}_{\Sigma})^\vee(x) \]; Paley-Wiener:
\[\text{PW}_{\Sigma} = P_{\Sigma}(L^2(\mathbb{R})) \]

Fundamental Questions Include . . .:

- Time localization of \(\text{PW}_{\Sigma} \)
- \(Q_{S} f(x) = f(x) \, \mathbb{1}_{S}(x) \);
- Eigenvalues of \(P_{\Sigma} Q_{S} P_{\Sigma} \): vs \(|S| \, |\Sigma| \), linear distribution of \(\Sigma \)
Time and frequency localization

- Fourier transform: \(\hat{f}(\xi) = \int_{\mathbb{R}} f(t) e^{-2\pi i t \xi} \, dt \)

- \(P_{\Sigma} f(x) = (\hat{f} \, \mathbb{1}_{\Sigma})^\vee(x) \); Paley-Wiener: \(PW_{\Sigma} = P_{\Sigma}(L^2(\mathbb{R})) \)

- Fundamental Questions Include . . . :
 - Time localization of \(PW_{\Sigma} \)
 - \(Q_{S} f(x) = f(x) \, \mathbb{1}_{S}(x) \)
 - Eigenvalues of \(P_{\Sigma} Q_{S} P_{\Sigma} \): vs \(|S| |\Sigma| \), linear distribution of \(\Sigma \)
 - Especially, \(S \) an interval
Time and frequency localization

- Fourier transform: \(\hat{f}(\xi) = \int_{\mathbb{R}} f(t) e^{-2\pi it\xi} dt \)
- \(P_\Sigma f(x) = (\hat{f} \text{ 1}_\Sigma)^\vee(x) \); Paley-Wiener: \(\text{PW}_\Sigma = P_\Sigma(\mathbb{L}^2(\mathbb{R})) \)
- **Fundamental Questions Include . . . :**
 - Time localization of \(\text{PW}_\Sigma \)
 - \(Q_S f(x) = f(x) \text{ 1}_S(x) \)
 - Eigenvalues of \(P_\Sigma Q_S P_\Sigma \): vs \(|S||\Sigma| \), linear distribution of \(\Sigma \)
 - Especially, \(S \) an interval
 - Sampling theory of \(\text{PW}_\Sigma \)
Time and frequency localization

- Fourier transform: \(\hat{f}(\xi) = \int_{\mathbb{R}} f(t) e^{-2\pi it\xi} dt \)
- \(P_\Sigma f(x) = (\hat{f} \mathbb{1}_\Sigma)^\vee (x) \); Paley-Wiener: \(PW_\Sigma = P_\Sigma(L^2(\mathbb{R})) \)
- Fundamental Questions Include . . . :
 - Time localization of \(PW_\Sigma \)
 - \(Q_S f(x) = f(x) \mathbb{1}_S(x) \)
 - Eigenvalues of \(P_\Sigma Q_S P_\Sigma \): vs \(|S||\Sigma| \), linear distribution of \(\Sigma \)
 - Especially, \(S \) an interval
 - Sampling theory of \(PW_\Sigma \)
 - Sample based time-localized approximations
Time and frequency localization

- Fourier transform: \(\hat{f}(\xi) = \int_{\mathbb{R}} f(t) e^{-2\pi i t \xi} \, dt \)
- \(P_{\Sigma} f(x) = (\hat{f} \, 1_{\Sigma})^\vee (x) \); Paley-Wiener: \(PW_{\Sigma} = P_{\Sigma}(L^2(\mathbb{R})) \)
- **Fundamental Questions Include . . . :**
 - Time localization of \(PW_{\Sigma} \)
 - \(QS f(x) = f(x) \, 1_S(x) \)
 - Eigenvalues of \(P_{\Sigma} QS P_{\Sigma} \): vs \(|S||\Sigma| \), linear distribution of \(\Sigma \)
 - Especially, \(S \) an interval
 - Sampling theory of \(PW_{\Sigma} \)
 - Sample based time-localized approximations
 - \(\phi_n \) eigenvectors of \(P_{\Sigma} QS \),
Fourier transform: $\hat{f}(\xi) = \int_{\mathbb{R}} f(t) e^{-2\pi i t \xi} dt$

$P_\Sigma f(x) = (\hat{f} \mathbb{1}_\Sigma)^\vee(x)$; Paley-Wiener: $PW_\Sigma = P_\Sigma(L^2(\mathbb{R}))$

Fundamental Questions Include . . . :

- Time localization of PW_Σ
 - $Q_\Sigma f(x) = f(x) \mathbb{1}_S(x)$;
 - Eigenvalues of $P_\Sigma Q_\Sigma P_\Sigma$: vs $|S||\Sigma|$, linear distribution of Σ
 - Especially, S an interval

- Sampling theory of PW_Σ
- Sample based time-localized approximations
 - ϕ_n eigenvectors of $P_\Sigma Q_\Sigma$,
 - Quantify $\langle f, \phi_n \rangle$ in terms of $\{f(x_k)\}$
Fourier transform: \(\hat{f}(\xi) = \int_{\mathbb{R}} f(t) e^{-2\pi it\xi} \, dt \)

\(P_\Sigma f(x) = (\hat{f} \, 1_\Sigma)^{\vee}(x) \); Paley-Wiener: \(\text{PW}_\Sigma = P_\Sigma(L^2(\mathbb{R})) \)

Fundamental Questions Include . . . :

- Time localization of \(\text{PW}_\Sigma \)
 - \(Q_\Sigma f(x) = f(x) \, 1_S(x) \);
 - Eigenvalues of \(P_\Sigma Q_\Sigma P_\Sigma \): vs \(|S||\Sigma| \), linear distribution of \(\Sigma \)
 - Especially, \(S \) an interval

- Sampling theory of \(\text{PW}_\Sigma \)
- Sample based time-localized approximations
 - \(\phi_n \) eigenvectors of \(P_\Sigma Q_\Sigma \),
 - Quantify \(\langle f, \phi_n \rangle \) in terms of \(\{f(x_k)\} \)
 - . . . finite-dimensional approximations
Time and frequency localization

- Fourier transform: $\hat{f}(\xi) = \int_{\mathbb{R}} f(t) e^{-2\pi i t \xi} \, dt$

- $P_{\Sigma} f(x) = (\hat{f} 1_{\Sigma})^\vee(x)$; Paley-Wiener: $\text{PW}_\Sigma = P_{\Sigma}(L^2(\mathbb{R}))$

- **Fundamental Questions Include . . .:**
 - Time localization of PW_Σ
 - $Q_S f(x) = f(x) 1_S(x)$;
 - Eigenvalues of $P_{\Sigma} Q_S P_{\Sigma}$: vs $|S||\Sigma|$, linear distribution of Σ
 - Especially, S an interval
 - Sampling theory of PW_Σ
 - Sample based time-localized approximations
 - ϕ_n eigenvectors of $P_{\Sigma} Q_S$,
 - Quantify $\langle f, \phi_n \rangle$ in terms of $\{f(x_k)\}$
 - . . . finite-dimensional approximations
 - FFT version . . . communications applications
I. Time and frequency localization: Bell Labs Theory

\[P \Sigma Q S P \text{ self-adjoint}, \]
\[\lambda_{\text{max}} = \lambda_0 = \| P \Sigma Q S \| = \sup_{f \in \mathcal{P}, \| f \| = 1} \| Q S(f) \|_2 \]

Uncertainty principle:
\[\lambda_{\text{max}} < 1 \text{ if } |S| |\Sigma| < \infty \]

Joe Lakey (w Scott Izu)
I. Time and frequency localization: Bell Labs Theory

- $P_\Sigma Q_S P_\Sigma$: self-adjoint,
1. Time and frequency localization: Bell Labs Theory

- $P_\Sigma Q_S P_\Sigma$: self-adjoint,

\[\lambda_{\text{max}} = \lambda_0 = \| P_\Sigma Q_S \| = \sup_{f \in \mathcal{P}W_\Sigma, \|f\|=1} \| Q_S(f) \|^2 \]
I. Time and frequency localization: Bell Labs Theory

- $P_\Sigma Q S P_\Sigma$: self-adjoint,

- $\lambda_{\text{max}} = \lambda_0 = \| P_\Sigma Q S \| = \sup_{f \in \mathcal{PW}_\Sigma, \| f \| = 1} \| Q_S(f) \|^2$

- Uncertainty principle: $\lambda_{\text{max}} < 1$ if $|S||\Sigma| < \infty$
\begin{itemize}
 \item \(S = [-T/2, T/2] \); \(\Sigma = [-\Omega/2, \Omega/2] \), \(\operatorname{tr} P_\Omega Q_T = T\Omega \equiv c \).
\end{itemize}
- $S = [-T/2, T/2]$; $\Sigma = [-\Omega/2, \Omega/2]$, $\text{tr } P_\Omega Q_T = T\Omega \equiv c$.
- Orthonormal eigenfunctions: $P_\Omega Q_T \phi_j = \lambda_j \phi_j$
Prolate spheroidal wave functions

- $S = [-T/2, T/2]$; $\Sigma = [-\Omega/2, \Omega/2]$, $\text{tr} \, P_\Omega Q_T = T \Omega \equiv c$.
- Orthonormal eigenfunctions: $P_\Omega Q_T \phi_j = \lambda_j \phi_j$
- $P_\Omega Q_T$ commutes with

$$\left(T^2 - t^2\right) \frac{d^2}{dt^2} - 2t \frac{d}{dt} - \Omega^2 t^2$$
Prolate spheroidal wave functions

- $S = [-T/2, T/2]; \Sigma = [-\Omega/2, \Omega/2]$, $\text{tr} \, P_\Omega Q_T = T\Omega \equiv c$.
- Orthonormal eigenfunctions: $P_\Omega Q_T \phi_j = \lambda_j \phi_j$
- $P_\Omega Q_T$ commutes with
 \[
 (T^2 - t^2) \frac{d^2}{dt^2} - 2t \frac{d}{dt} - \Omega^2 t^2
 \]
- Eigenfunctions are Prolate Spheroidal Wave Functions
Approximately $c = \Omega T$ eigenvalues close to one
Eigenvalue properties

- Approximately $c = \Omega^T$ eigenvalues close to one
- Plunge region of width $\approx \log c$
Eigenvalue properties

- Approximately $c = \Omega T$ eigenvalues close to one
- Plunge region of width $\approx \log c$
- Transition about $j = [c]$: $\lambda_{[c]+1} \leq 1/2 \leq \lambda_{[c]-1}$
Figure: *Eigenvalues for one frequency interval.* \(N = 1025 \) point centered DFT. \(S \sim 513 + [-128, 128] \); \(\Sigma \sim 513 + [-128, 128] \).

\(c = \#T \times \#\Sigma/N \approx 64 \). Plunge region \(\sim 61 \leq n \leq 69 \).
Figure: Even eigenvectors for one frequency interval. $N = 129$ point centered DFT. $S \sim 65 + [-16, 16]$; $\Sigma \sim 65 + [-16, 16]$. $c = \#T \times \#\Sigma/N = 8.44$. Plunge region $\sim 7 \leq n \leq 12$.
Figure: *Eigenvalues for two frequency intervals.* $N = 1025$ point centered DFT. $S \sim 513 + [-128, 128]$; $\Sigma \sim 512 + [-64, 64] \cup [128, 192]$. $c \approx \#T \times \#\Sigma/N \approx 64$. Plunge region $\sim 55 \leq n \leq 84$.
Figure: Discrete eigenvectors, two “symmetric” frequency intervals.
Normalized area 24.69
“RANDOM” frequency support

Figure: Random Σ, $N = 129$. $c = 24.69$.
Figure: *Eigenvalues for random* Σ. $N = 129$, $c = 24.69$. Flat around $c = |\Sigma|$
Figure: Eigenvectors (real parts) for random Σ. $N = 129$, $c = 24.69$
The “Σ T”-theorem, $N(\alpha)$, Multiple intervals

The “ΣT”-theorem, $N(\alpha)$, Multiple intervals

- S, Σ: finite unions of intervals
The “Σ T”-theorem, $N(\alpha)$, Multiple intervals

- S, Σ: finite unions of intervals
- $\xi \in c\Sigma$: $\xi/c \in \Sigma$
The “$\Sigma \mathcal{T}$”-theorem, $N(\alpha)$, Multiple intervals

- S, Σ: finite unions of intervals
- $\xi \in c\Sigma$: $\xi/c \in \Sigma$
- $A_c = P_{c\Sigma}QS P_{c\Sigma}$
The “Σ T”-theorem, $N(\alpha)$, Multiple intervals

- S, Σ: finite unions of intervals
- $\xi \in c\Sigma$: $\xi/c \in \Sigma$
- $A_c = P_{c\Sigma} Q SP_{c\Sigma}$
- $N(A_c, \alpha) = \#\{\lambda(A_c) > \alpha\}$
The “ΣT”-theorem, $N(\alpha)$, Multiple intervals

- S, Σ: finite unions of intervals
- $\xi \in c\Sigma$: $\xi/c \in \Sigma$
- $A_c = P_{c\Sigma} Q_S P_{c\Sigma}$
- $N(A_c, \alpha) = \#\{\lambda(A_c) > \alpha\}$
- $N(A_c, \alpha) = c|S||\Sigma| + \frac{N_S N_\Sigma}{\pi^2} \log\left(\frac{1-\alpha}{\alpha}\right) \log c + o(\log c)$
The “Σ T”-theorem, $N(\alpha)$, Multiple intervals

- S, Σ: finite unions of intervals
- $\xi \in c\Sigma$: $\xi/c \in \Sigma$
- $A_c = P_{c\Sigma} Q_S P_{c\Sigma}$
- $N(A_c, \alpha) = \#\{\lambda(A_c) > \alpha\}$
- $N(A_c, \alpha) = c|S||\Sigma| + \frac{N_S N_\Sigma}{\pi^2} \log\left(\frac{1-\alpha}{\alpha}\right) \log c + o(\log c)$
- Area $c|S||\Sigma|$ for $\alpha = 1/2$ in limit.
The “Σ T”-theorem, $N(\alpha)$, Multiple intervals

- S, Σ: finite unions of intervals
- $\xi \in c\Sigma$: $\xi/c \in \Sigma$
- $A_c = P_c\Sigma Q_S P_c\Sigma$
- $N(A_c, \alpha) = \#\{\lambda(A_c) > \alpha\}$
- $N(A_c, \alpha) = c|S||\Sigma| + \frac{N_S N_\Sigma}{\pi^2} \log\left(\frac{1-\alpha}{\alpha}\right) \log c + o(\log c)$
- Area $c|S||\Sigma|$ for $\alpha = 1/2$ in limit.
- $N_S N_\Sigma$: width of “plunge region”
Plunge width $\sim N_s N_\Sigma$
Plunge width $\sim N_\Sigma N_\Sigma$

- Separated at infinity
Plunge width $\sim N_\Sigma N_\Sigma$

- Separated at infinity
- ϕ_j frequency concentrated on l_j, $|l_j| = 1$
Plunge width $\sim N_S N_{\Sigma}$

- Separated at infinity
- ϕ_j frequency concentrated on l_j, $|l_j| = 1$
- $\phi_j(t) = e^{2\pi im_j t}\varphi_j(t)$ $m_j = I_j$.

Each I_j gives one eigenvalue $\approx 1/2$.

If each I_j were very short: no large eigenvalues.
Plunge width $\sim N_S N_\Sigma$

- Separated at infinity
- ϕ_j frequency concentrated on l_j, $|l_j| = 1$
- $\phi_j(t) = e^{2\pi i m_j t} \varphi_j(t)$ $m_j = \overline{l_j}$.
- φ_j frequency concentrated on $[-1/2, 1/2]$.
Plunge width $\sim N_S N_\Sigma$

- Separated at infinity
- ϕ_j frequency concentrated on l_j, $|l_j| = 1$
- $\phi_j(t) = e^{2\pi i m_j t} \varphi_j(t)$ $m_j = \overline{l_j}$.
- φ_j frequency concentrated on $[-1/2, 1/2]$.

\[
\langle Q\phi_j, Q\phi_k \rangle = \int_{-1/2}^{1/2} e^{2\pi i (m_j - m_k) t} \varphi_j(t) \overline{\varphi_k(t)} \, dt
\]

\[
= \hat{\varphi}_1 \ast \hat{\varphi}_2 \ast \text{sinc} (m_1 - m_2) = O(1/|m_1 - m_2|)
\]
Plunge width $\sim N_S N_\Sigma$

- Separated at infinity
- ϕ_j frequency concentrated on I_j, $|I_j| = 1$
 \[\phi_j(t) = e^{2\pi i m_j t} \varphi_j(t) \quad m_j = \overline{I_j}. \]
- φ_j frequency concentrated on $[-1/2, 1/2]$.

\[
\langle Q\phi_j, Q\phi_k \rangle = \int_{-1/2}^{1/2} e^{2\pi i (m_j - m_k) t} \varphi_j(t) \overline{\varphi_k(t)} \, dt
= \hat{\varphi}_1 \ast \hat{\varphi}_2 \ast \text{sinc} (m_1 - m_2) = O(1/|m_1 - m_2|)
\]

- Each I_j gives one eigenvalue $\approx 1/2$
Plunge width $\sim N_S N_\Sigma$

- Separated at infinity
- ϕ_j frequency concentrated on l_j, $|l_j| = 1$
- $\phi_j(t) = e^{2\pi i m_j t} \varphi_j(t)$ $m_j = \bar{l}_j$.
- φ_j frequency concentrated on $[-1/2, 1/2]$.

$$\langle Q\phi_j, Q\phi_k \rangle = \int_{-1/2}^{1/2} e^{2\pi i (m_j - m_k) t} \varphi_j(t) \overline{\varphi_k(t)} \, dt$$

$$= \hat{\varphi}_1 \ast \hat{\varphi}_2 \ast \text{sinc} (m_1 - m_2) = O(1/|m_1 - m_2|)$$

- Each l_j gives one eigenvalue $\approx 1/2$
- If each l_j were very short: no large eigenvalues.
More discrete illustrations: random frequencies
Structured Fourier spectrum (DFT!)

Play/PauseSlow
When is area formula $\lambda_{[c]} \geq 1/2$ still valid?

Proposition

(Izu)

Let $\Sigma = [-1/2, 1/2]$ and let S be a union of m pairwise disjoint intervals of total length c. Set

$$\nu = \max_{\alpha} \# \{ k \in \mathbb{Z} : (k, k + 1) \subset S + \alpha \},$$

$$\mu = \min_{\beta} \# \{ \ell \in \mathbb{Z} : (\ell, \ell + 1) \cap S + \beta \neq \emptyset \}.$$

Then the eigenvalues λ_k of $Q_S P$ satisfy

$$\lambda_{\nu - 1} \geq 1/2 \geq \lambda_{\mu}.$$
Corollary
When $T = 1$ and Σ is a union of integer intervals $[k, k + 1]$, $\lambda_c = 1/2$.

Conjecture
When Σ is a symmetric union of “grid intervals” of length $1/T$ (so $c \in \mathbb{N}$) one has $\lambda_{c-k} + \lambda_{c+k} = 1$, $k = 1, \ldots, [c]$.
Figure: Eigenvalues for DFT localization, $N = 1024$, $T = 128$, 10 symmetrized length 16 intervals $c = 40$ (real part), Note symmetry
Figure: Σ: 10 symmetrized length 16 intervals $c = 40$ (real part)
Largest energy concentration for a given area?

- Donoho and Stark (1993): if $|\Sigma| = 1$ and $T \leq 0.8$ then ...
Largest energy concentration for a given area?

- Donoho and Stark (1993): if $|\Sigma| = 1$ and $T \leq 0.8$ then . . .

\[
\int_{-T/2}^{T/2} |f(t)|^2 dt \leq \int_{-T/2}^{T/2} |(\hat{f}^*)^\vee(t)|^2 dt.
\]
Largest energy concentration for a given area?

- Donoho and Stark (1993): if $|\Sigma| = 1$ and $T \leq 0.8$ then . . .

$$\int_{-T/2}^{T/2} |f(t)|^2 dt \leq \int_{-T/2}^{T/2} |(\hat{f}^*)^\vee(t)|^2 dt.$$

- Optimal concentration: Σ is an interval if T is small enough.
Largest energy concentration for a given area?

- Donoho and Stark (1993): if $|\Sigma| = 1$ and $T \leq 0.8$ then ...

$$\int_{-T/2}^{T/2} |f(t)|^2 \, dt \leq \int_{-T/2}^{T/2} |(\hat{f}^*)(t)|^2 \, dt.$$

- Optimal concentration: Σ is an interval if T is small enough.

- Rearrangement inequality fails for large measure.
\((\mathcal{S}, \Sigma) \) supports information if \(\|P_\Sigma Q_\mathcal{S} P_\Sigma\| \geq 1/2 \).
(S, Σ) supports information if $\|P_\Sigma Q S P_\Sigma\| \geq 1/2$.

... at rate N: N eigenvalues $\geq 1/2$
Information problem

- (S, Σ) supports information if $\|P_\Sigma Q_S P_\Sigma\| \geq 1/2$.
- ... at rate N: N eigenvalues $\geq 1/2$
- Rationale: basis functions \sim codes
Information problem

- (S, Σ) supports information if $\|P_\Sigma Q_S P_\Sigma\| \geq 1/2$.
- ... at rate N: N eigenvalues $\geq 1/2$
- Rationale: basis functions \sim codes
- Which pairs support information?
Theorem

(Candès, Romberg, Tao) Fix \(N \geq 512 \) and \(\beta \) such that \(1 \leq \beta \leq (3/8) \log N \). Suppose that \(S \) and \(\Sigma \) are subsets of \(\mathbb{Z}_N \) whose sizes satisfy

\[
|S| + |\Sigma| \leq M(N, \beta) = \frac{N}{\sqrt{\beta + 1} \log N} \left(\frac{1}{\sqrt{6}} + o(1) \right).
\]

Then with probability at least \(1 - O((\log N)^{1/2} / N^\beta) \), every signal \(x \) frequency supported in \(\Sigma \) satisfies

\[
\|x 1_S\|^2 \leq \frac{1}{2} \|x\|^2.
\]
The entropy of a partition \mathcal{P} of a probability space (X, \mathcal{B}, μ) is

$$E(P) = -\sum_{P \in \mathcal{P}} \mu(P) \log \mu(P).$$

Problem

Let $S \sim [-T/2, T/2]$ and let $|\Sigma|$ and hence $|S||\Sigma|$ be fixed in the finite time-frequency plane. Establish a quantitative, probabilistic relationship between an appropriate entropy of Σ and an appropriate norm of $A_{S\Sigma}$.
Figure: Norm of $P_{\Sigma}Q_T$ versus entropy, $N = 512$, $c = 8$
IV. Sampling and Time-Frequency localization
Sampling and eigenfunctions: Ω_T case

Theorem
(Shen and Walter; Khare and George)

$\varphi_n \sim \lambda_n$ of $PQ_T P$. Then

\[
\lambda_n \varphi_n(m) = \sum_k A_{mk} \varphi_n(k)
\]

where the doubly-infinite matrix A has entries A_{mk} given by

$$A_{mk} = \int_{-T/2}^{T/2} \text{sinc}(t-m) \text{sinc}(t-k) \, dt.$$
Sampling and eigenfunctions: ΩT case

Theorem
(Shen and Walter; Khare and George)

$\varphi_n \sim \lambda_n$ of $PQ_T P$. Then

$$\lambda_n \varphi_n(m) = \sum_k A_{mk} \varphi_n(k)$$

where the doubly-infinite matrix A_{mk} has entries

$$A_{mk} = \int_{-T/2}^{T/2} \text{sinc}(t - m) \text{sinc}(t - k) \, dt.$$
Sampling and eigenfunctions: ΩT case

Theorem
(Shen and Walter; Khare and George)

- $\varphi_n \sim \lambda_n$ of $PQ_T P$. Then

$$\lambda_n \varphi_n(m) = \sum_k A_{mk} \varphi_n(k)$$

- where the doubly-infinite matrix A has entries A_{mk} given by

$$A_{mk} = \int_{-T/2}^{T/2} \text{sinc} (t - m) \text{sinc} (t - k) \, dt.$$
Theorem
(Shen and Walter; Khare and George)

\(\varphi_n \sim \lambda_n\) of \(PQ_T P\). Then

\[\lambda_n \varphi_n(m) = \sum_k A_{mk} \varphi_n(k)\]

where the doubly-infinite matrix \(A\) has entries \(A_{mk}\) given by

\[A_{mk} = \int_{-T/2}^{T/2} \text{sinc}(t - m) \text{sinc}(t - k) \, dt.\]

i.e. samples of \(\varphi_n\) form \(n\)-th eigenvector of \(\{A_{mk}\}\).
Problem

Quantify the sense in which the eigenvectors of the matrix \(\tilde{A} \) obtained by truncating \(A_{mk} \) to zero where \(\max\{m, k\} > N \) approximate those of \(A \).
\[A_{k\ell} = \int_{-T}^{T} \text{sinc} (x - k) \text{sinc} (x - \ell) \, dx. \]

Proposition

(Izu, L.)

(i) When \(\ell > k \geq T \):

\[A_{k\ell} = \frac{(-1)^{k-\ell}}{\pi} \frac{2T}{(k + T)(\ell + T)} + O\left(\frac{1}{k^2(\ell - k)}\right), \quad \text{as } k, \ell \to \infty. \]

(ii) Let \(A_{k\ell}^{\text{trunc}} = A_{k\ell} \) if \(\max\{|k|,|\ell|\} \leq NT \) and \(A_{k\ell}^{\text{trunc}} = 0 \) otherwise. Set \(\tilde{A} = A - A_{k\ell}^{\text{trunc}}. \) Then \(\|\tilde{A}\|_{\ell^2 \to \ell^2} \approx C(NT)^{-1/2} \)

where \(C \) is a fixed constant independent of \(N \) and \(T \).
Problem
Quantify the sense in which the eigenvectors of the matrix \(\tilde{A} \) obtained by truncating \(A_{mk} \) to zero where \(\max\{m, k\} > N \) approximate those of \(A \).
Shen and Walter: Sample error for φ_n decays like $1/(N\lambda_n)$ with factor depending on area
Observations

- **Shen and Walter**: Sample error for φ_n decays like $1/(N\lambda_n)$ with factor depending on area
- **Khare and George**: Truncation up to size c works well for first c eigenvectors ... **empirical**

Joe Lakey (w Scott Izu) | Time-frequency multiband
Shen and Walter: Sample error for φ_n decays like $1/(N\lambda_n)$ with factor depending on area

Khare and George: Truncation up to size c works well for first c eigenvectors ... empirical

Levitina and Brandas: extended to convolution with a prolate
Observations

► **Shen and Walter**: Sample error for φ_n decays like $1/(N\lambda_n)$ with factor depending on area
► **Khare and George**: Truncation up to size c works well for first c eigenvectors . . . empirical
► **Levitina and Brandas**: extended to *convolution with a prolate*
► **Karoui and Moumni**: Replace truncation with Legendre approximations of PSWF samples (Bouwkamp’s method). Generalizable to multiband case?

Joe Lakey (w Scott Izu) | Time-frequency multiband
Observations

- **Shen and Walter**: Sample error for φ_n decays like $1/(N\lambda_n)$ with factor depending on area
- **Khare and George**: Truncation up to size c works well for first c eigenvectors ... empirical
- **Levitina and Brandas**: extended to *convolution with a prolate*
- **Karoui and Moumni**: Replace truncation with Legendre approximations of PSWF samples (Bouwkamp’s method). Generalizable to multiband case?
- **Are numerical approximations better than theoretical bounds** for λ_n, small n?
Observations

- **Shen and Walter**: Sample error for φ_n decays like $1/(N\lambda_n)$ with factor depending on area.
- **Khare and George**: Truncation up to size c works well for first c eigenvectors . . . empirical.
- **Levitina and Brandas**: extended to *convolution with a prolate*.
- **Karoui and Moumni**: Replace truncation with Legendre approximations of PSWF samples (Bouwkamp’s method). Generalizable to multiband case?
- **Are numerical approximations better than theoretical bounds** for λ_n, small n?
- **Generalizability** to multiband?
Figure: Interpolation from truncation approximations. $T = 5, N = 10$: 21 terms (left). DPSS sequences $[E,V]=\text{dpss}(120,10)$ (right). Approximation is excellent for PSWFs with $\lambda \approx 1$.
Problem

Describe projection onto localized eigenspaces of $P_{\Sigma} Q_T P_{\Sigma}$ in terms of samples of eigenvectors in the multiband case.
First steps: Sampling and eigenfunctions

- $S \subset \mathbb{R}$ and $\Sigma \subset \mathbb{R}$; ψ_n: $\forall f \in PW_\Sigma, f(t) = \sum_n f(x_n)\psi_n(t)$
First steps: Sampling and eigenfunctions

- $S \subset \mathbb{R}$ and $\Sigma \subset \mathbb{R}$; ψ_n: $\forall f \in \text{PW}_\Sigma$, $f(t) = \sum_n f(x_n)\psi_n(t)$
- Define $g_n(t) = (1_\Sigma)^\vee (x_n - t)$.
First steps: Sampling and eigenfunctions

- $S \subset \mathbb{R}$ and $\Sigma \subset \mathbb{R}$; ψ_n: $\forall f \in \text{PW}_\Sigma$, $f(t) = \sum_n f(x_n)\psi_n(t)$
- Define $g_n(t) = (\mathbb{1}_\Sigma)^\vee (x_n - t)$.
- $B : B_{nm} = \int_S g_n(t)\psi_m(t) \, dt$
First steps: Sampling and eigenfunctions

- \(S \subset \mathbb{R} \) and \(\Sigma \subset \mathbb{R} \); \(\psi_n \): \(\forall f \in PW_{\Sigma}, \ f(t) = \sum_n f(x_n)\psi_n(t) \)
- Define \(g_n(t) = (1_{\Sigma})^\vee (x_n - t) \).
- \(B : B_{nm} = \int_S g_n(t)\psi_m(t) \, dt \)
- Then

\[
P_{\Sigma}Q_Sf(x_n) = \int_S \left(\sum_m f(x_n)\psi_m(t) \right) g_n(t) \, dt = \sum_m B_{nm}f(x_m)
\]
First steps: Sampling and eigenfunctions

- $S \subset \mathbb{R}$ and $\Sigma \subset \mathbb{R}$; ψ_n: $\forall f \in \text{PW}_\Sigma$, $f(t) = \sum_n f(x_n)\psi_n(t)$
- Define $g_n(t) = (1_\Sigma)^\vee(x_n - t)$.
- $B: B_{nm} = \int_S g_n(t)\psi_m(t)\,dt$
- Then

$$P_\Sigma Q_S f(x_n) = \int_S \left(\sum_m f(x_n)\psi_m(t)\right) g_n(t)\,dt = \sum_m B_{nm} f(x_m)$$

- and

$$P_\Sigma Q_S f(t) = \sum_n (P_\Sigma Q_S f)(x_n)\psi_n(t) = \sum_n \left(\sum_m B_{nm} f(x_n)\right)\psi_n(t)$$
Theorem

(Izu) If φ is a λ-eigenfunction of $P_\Sigma Q_S$ then $\{\varphi(x_n)\}$ is a λ-eigenvector of B. Conversely, if v is a λ-eigenvector of B and if $\varphi(t) = \sum_m v_m g_m(t)$ converges then φ is a λ-eigenfunction of $P_\Sigma Q_S$.
Next steps . . .: Sampling of multiband signals

- Venkataramani and Bresler: periodic nonuniform sampling; Interpolating functions . . .
Next steps . . .: Sampling of multiband signals

► Venkataramani and Bresler: periodic nonuniform sampling; Interpolating functions . . .
► Many other approaches: Herley and Wong, Behmard Faridani and Walnut, Avdonin and Moran . . .
In multiband case still need
In multiband case still need
- **Analytical** eigenvalue estimates
Summary

- In multiband case still need
 - **Analytical** eigenvalue estimates
 - **Numerical** evaluation of eigenfunctions
In multiband case still need
- **Analytical** eigenvalue estimates
- **Numerical** evaluation of eigenfunctions
- **Sampling** projections/approximations
In multiband case still need

- **Analytical** eigenvalue estimates
- **Numerical** evaluation of eigenfunctions
- **Sampling** projections/approximations
In multiband case still need
 ▶ Analytical eigenvalue estimates
 ▶ Numerical evaluation of eigenfunctions
 ▶ Sampling projections/approximations

Applications to ... communications ...