Hilbert schemes of points

Li Li

Talk in AGNES Workshop
Oct. 30, 2009
Outline

Hilbert scheme of points on \mathbb{C}^2

Hilbert scheme of points on a Deligne-Mumford stack

Hilbert scheme and q, t-Catalan numbers
Hilbert scheme of points on \mathbb{C}^2

$\text{Hilb}^n(\mathbb{C}^2)$ is a scheme that parameterizes 0-dimensional subschemes $Z \subset \mathbb{C}^2$ satisfying $\dim \mathcal{O}_Z = n$.
Hilbert scheme of points on \mathbb{C}^2

$\text{Hilb}^n(\mathbb{C}^2)$ is a scheme that parameterizes 0-dimensional subschemes $Z \subset \mathbb{C}^2$ satisfying $\dim \mathcal{O}_Z = n$.

Example

- $n = 1$. $\text{Hilb}^1(\mathbb{C}^2) = \mathbb{C}^2$.
- $n = 2$. $\text{Hilb}^2(\mathbb{C}^2) = (\text{Bl}_\mathcal{I} \mathbb{C}^4)/S_2$, where
 \[\mathcal{I} = (x_1 - x_2, y_1 - y_2). \]
- For general n. $\text{Hilb}^n(\mathbb{C}^2) = (\text{Bl}_\mathcal{I} \mathbb{C}^{2n})/S_n$, where
 \[\mathcal{I} = \cap_{1 \leq i < j \leq n}(x_i - x_j, y_i - y_j). \]
Properties of $\text{Hilb}^n(\mathbb{C}^2)$:

- $\text{Hilb}^n(\mathbb{C}^2)$ is smooth and connected.
- $\text{Hilb}^n(\mathbb{C}^2)$ has a cellular decomposition.
- There is a Hilbert-Symm morphism $\text{Hilb}^n(\mathbb{C}^2) \to \text{Sym}^n(\mathbb{C}^2)$.
- $\text{Hilb}^n(\mathbb{C}^2)$ is holomorphic symplectic, hence gives a crepant resolution of $\text{Sym}^n(\mathbb{C}^2)$.
Hilbert scheme of points on a Deligne-Mumford stack (a project suggested by J. Starr)

Assume $k = \bar{k}$,

\mathcal{X} is a tame DM stack / k and is a global quotient, the coarse moduli space X is (quasi-)projective.
Hilbert scheme of points on a Deligne-Mumford stack (a project suggested by J. Starr)

Assume $k = \bar{k}$,

\mathcal{X} is a tame DM stack $\rightarrow k$ and is a global quotient, the coarse moduli space X is (quasi-)projective.

Definition

$\text{Hilb}^n(\mathcal{X})$ is the (quasi-)projective scheme that represents the functor

$$
\begin{align*}
T \rightarrow \left\{ \mathcal{C} \subset \mathcal{X} \times T \right\} & \quad \left(k\text{-Schemes} \right) \rightarrow \left(\text{Sets} \right) \\
\text{where } \mathcal{C} \text{ is a closed substack, finitely presented, flat and proper over } T, \\
\text{satisfy the Hilbert polynomial condition (*)} & \\
\end{align*}
$$

Recall: \(\forall \) coherent \(\mathcal{O}_X \)-module \(F \), define

\[
\chi(X, F) = \sum_{i=0}^{\infty} (-1)^i \dim_k H^i_{\acute{e}t}(X, F).
\]

The Hilbert polynomial of \(F \), \(P_F : K^0(X) \to \mathbb{Z} \), is defined as

\[
[\mathcal{E}] \to \chi(X, \mathcal{E} \otimes_{\mathcal{O}_X} F), \quad \forall \text{ locally free sheaf } \mathcal{E}.
\]

Condition (*): \(P_{\mathcal{O}_t}(\mathcal{E}) = n \ \text{rank}\mathcal{E} \quad \forall t \in T. \)
Theorem

Let \mathcal{X} be a smooth 2-dim tame DM stack with (quasi-)projective coarse moduli space X. Then $\text{Hilb}^n(\mathcal{X})$ is smooth and (quasi-)projective for all $n \in \mathbb{N}$.
Theorem

Let \mathcal{X} be a smooth 2-dim tame DM stack with (quasi-)projective coarse moduli space X.

Then $\text{Hilb}^n(\mathcal{X})$ is smooth and (quasi-)projective for all $n \in \mathbb{N}$.

Idea: \exists étale covering $\{X_i \to X\}$, scheme U_i with G_i-action,

$\begin{array}{ccc}
[U_i/G_i] & \longrightarrow & \mathcal{X} \\
\downarrow & & \downarrow \\
X_i & \text{étale} & X
\end{array}$

Let $W =$ the maximal open subscheme of $\text{Hilb}^n([U_i/G_i])$ where the rational map $\text{Hilb}^n([U_i/G_i]) \dashrightarrow \text{Hilb}^n(\mathcal{X})$ is defined.

Show that $W \to \text{Hilb}^n(\mathcal{X})$ is étale.

Then show that $\text{Hilb}^n([U_i/G_i])$ is smooth. □
Proposition

Let \mathcal{X} be a tame DM stack and is a global quotient. Suppose its coarse moduli space X is a quasi-projective scheme. Then there exists a morphism

$$\text{Hilb}^n(\mathcal{X}) \to \text{Sym}^n(X)$$

taking a zero-dimensional substack to the underlying set of points in X over which the substack is supported.

Remark: Neeman showed that $\text{Sym}^n\mathbb{P}^m \to \text{Chow}_{0,n}\mathbb{P}^m$ is not an isomorphism if $\text{char } k = p > 0$ and $n, m \geq p + 1$.
Theorem

Let \(\mathcal{X} \) be a smooth 2-dim tame DM stack with a connected quasi-projective coarse moduli space \(X \). Assume \(\mathcal{X} \) has only isolated stacky points and each isotropy group is

1. abelian, or,
2. a subgroup of \(SL(2, \mathbb{C}) \) (for \(k = \mathbb{C} \)).

Then the quasi-projective scheme \(\text{Hilb}^n \mathcal{X} \) is connected.
Theorem

Let \mathcal{X} be a smooth 2-dim tame DM stack with a connected quasi-projective coarse moduli space X. Assume \mathcal{X} has only isolated stacky points and each isotropy group is

1. abelian, or,
2. a subgroup of $SL(2, \mathbb{C})$ (for $k = \mathbb{C}$).

Then the quasi-projective scheme $\text{Hilb}^n \mathcal{X}$ is connected.

Idea: Consider $\pi : \text{Hilb}^n(\mathcal{X}) \rightarrow \text{Sym}^n(X)$. Since $\text{Sym}^n(X)$ is connected, it suffices to show each fiber of π is connected. Each fiber is isomorphic to a fiber of

$$\text{Hilb}^n([\mathbb{A}^2/G]) \rightarrow \text{Sym}^n(\mathbb{A}^2/G).$$

By Zariski’s main theorem, it suffices to show that $\text{Hilb}^n([\mathbb{A}^2/G])$ is connected, which is known under condition (1) or (2). \square
Example

For $\mathcal{X} = \mathbb{A}^2 / G$, $\text{Hilb}^n(\mathcal{X})$ are Hilbert schemes of regular G-orbits.

- $G = \text{abelian group}$: $\text{Hilb}^n(\mathcal{X})$ is a multigraded Hilbert scheme.
- $n = 1$: $\text{Hilb}^1(\mathcal{X}) = G$-Hilbert schemes.
- $G \subset SL_2(\mathbb{C})$: $\text{Hilb}^n(\mathcal{X})$ is a quiver variety.
Proposition

Suppose \((a, m) = 1, 1 \leq a \leq m - 1\).

\(\mu_m\) act on \(\mathbb{C}^2\) as \(\omega \cdot (x, y) = (\omega x, \omega^a y)\) where \(\omega = e^{2\pi i / m}\).

Let \(\tilde{X}\) be the minimal resolution of \(\mathbb{C}^2/\mu_m\).

Then the natural birational map

\[
\text{Hilb}^n(\tilde{X}) \dashrightarrow \text{Hilb}^n([\mathbb{C}^2/\mu_m])
\]

is not a morphism for \(n \geq 2\).
Proposition

Suppose \((a, m) = 1, 1 \leq a \leq m - 1\).

\(\mu_m\) act on \(\mathbb{C}^2\) as \(\omega \cdot (x, y) = (\omega x, \omega^a y)\) where \(\omega = e^{2\pi i / m}\).

Let \(\tilde{X}\) be the minimal resolution of \(\mathbb{C}^2/\mu_m\).

Then the natural birational map

\[\text{Hilb}^n(\tilde{X}) \dashrightarrow \text{Hilb}^n([\mathbb{C}^2/\mu_m]) \]

is not a morphism for \(n \geq 2\).

Remark: Take \(a = m - 1\). Then \(\text{Hilb}^n(\tilde{X})\) and \(\text{Hilb}^n([\mathbb{C}^2/\mu_m])\) give different crepant resolutions of \(\text{Sym}^n(\mathbb{C}^2/\mu_m)\) for \(n \geq 2\).
Betti numbers and cellular decomposition of $\text{Hilb}^n([\mathbb{A}^2/\mu_m])$

Theorem

Let $n, a, b, m \in \mathbb{N}$ such that $\gcd(a, b, m) = 1$. Let μ_m acting on \mathbb{A}^2 as $\omega(x, y) = (\omega^ax, \omega^by)$ where $\omega^m = 1$. Then $\text{Hilb}^n([\mathbb{A}^2/\mu_m])$ is a smooth irreducible quasi-projective scheme with a cellular decomposition, and this decomposition is described in terms of certain combinatoric data.
Betti numbers and cellular decomposition of $\text{Hilb}^n(\mathbb{A}^2/\mu_m)$

Theorem

Let $n, a, b, m \in \mathbb{N}$ such that $\text{gcd}(a, b, m) = 1$. Let μ_m acting on \mathbb{A}^2 as $\omega(x, y) = (\omega^a x, \omega^b y)$ where $\omega^m = 1$. Then $\text{Hilb}^n(\mathbb{A}^2/\mu_m)$ is a smooth irreducible quasi-projective scheme with a cellular decomposition, and this decomposition is described in terms of certain combinatoric data.

Example

For $n = 2, a = 1, b = 1, m = 2$, there are five admissible Young diagrams.

\[
\begin{array}{c}
\begin{array}{c}
0 & 1 & 0 & 1 \\
0 & 1 & & 0
\end{array}
\end{array}
\]
\[d(D)=0\]

\[
\begin{array}{c}
\begin{array}{c}
1 & 0 \\
1 & 0
\end{array}
\end{array}
\]
\[d(D)=1\]

\[
\begin{array}{c}
\begin{array}{c}
1 & 0 & 1 & 0 \\
0 & 1 & & 0
\end{array}
\end{array}
\]
\[d(D)=1\]

\[
\begin{array}{c}
\begin{array}{c}
1 \\
0 & 1
\end{array}
\end{array}
\]
\[d(D)=2\]

\[
\begin{array}{c}
\begin{array}{c}
1 & 0 \\
1 & 0
\end{array}
\end{array}
\]
\[d(D)=2\]

$\text{Hilb}^2(\mathbb{A}^2/\mu_2) \cong \mathbb{A}^4 + 2\mathbb{A}^3 + 2\mathbb{A}^2$, \quad $\text{Hilb}^2_0(\mathbb{A}^2/\mu_2) \cong \mathbb{A}^0 + 2\mathbb{A}^1 + 2\mathbb{A}^2$.
Summary:

- Define $\text{Hilb}^n(\mathcal{X})$ for a tame DM-stack.
- Let \mathcal{X} be a smooth tame DM-stack of dim 2,
 - $\text{Hilb}^n(\mathcal{X})$ is smooth.
 - give sufficient conditions for $\text{Hilb}^n(\mathcal{X})$ to be connected.
 - for $\mathcal{X} = \mathbb{A}^2/\mu_m$, $\text{Hilb}^n(\mathcal{X})$ has a cellular decomposition.
Summary:

- Define $\text{Hilb}^n(X)$ for a tame DM-stack.
- Let X be a smooth tame DM-stack of dim 2,
 - $\text{Hilb}^n(X)$ is smooth.
 - give sufficient conditions for $\text{Hilb}^n(X)$ to be connected.
 - for $X = [\mathbb{A}^2/\mu_m]$, $\text{Hilb}^n(X)$ has a cellular decomposition.

Ongoing research:

- The global geometry of $\text{Hilb}^n(X)$ for a toric DM stack X.
- Connectedness of $\text{Hilb}^n(X)$ for general X.
Hilbert scheme and \(q, t \)-Catalan numbers (joint with Kyungyong Lee)

Consider the ideal \(I = \cap_{1 \leq i < j \leq n} (x_i - x_j, y_i - y_j) \) of \(\mathbb{C}[x, y] := \mathbb{C}[x_1, \ldots, x_n, y_1, \ldots, y_n] \).
Define \(M = I / (x, y)I \).

Problem (Haiman)

Find an explicit basis of the bi-graded vector space \(M \).
Hilbert scheme and q, t-Catalan numbers (joint with Kyungyong Lee)

Consider the ideal $I = \cap_{1 \leq i < j \leq n}(x_i - x_j, y_i - y_j)$ of $\mathbb{C}[x, y] := \mathbb{C}[x_1, \ldots, x_n, y_1, \ldots, y_n]$. Define $M = I/(x, y)I$.

Problem (Haiman)

Find an explicit basis of the bi-graded vector space M.

Theorem (Haiman)

1. $\dim M = \frac{1}{n+1} \binom{2n}{n}$.
2. q, t-Catalan number $C_n(q, t) = \sum_{d_1, d_2} t^{d_1} q^{d_2} \dim M_{d_1, d_2}$.
3. Let H^n_0 be the zero fiber of $\text{Hilb}^n(\mathbb{C}^2) \to \text{Sym}^n(\mathbb{C}^2)$. Then

 $C_n(q, t) = \sum_{i=0}^{n-1} (-1)^i \text{tr}_{H^i(H^n_0, O(1))}(q, t)$.

Table of q, t-catalan number for $n = 7$.

The coefficient of $q^{d_1} t^{d_2}$ is $p(k)$ for $k = n(n - 1)/2 - d_1 - d_2$, $d_1, d_2 \geq k$.
Theorem

Let d_1, d_2 be non-negative integers s.t. $d_1 + d_2 \leq \binom{n}{2}$. Define $k = \binom{n}{2} - d_1 - d_2$ and $\delta = \min(d_1, d_2)$. Then

$$\dim M_{d_1, d_2} \leq p(\delta, k),$$

and the equality holds iff

- $k \leq n - 3$, or
- $k = n - 2$ and $\delta = 1$, or
- $\delta = 0$.

In case the equality holds, there is an explicit construction of a basis of M_{d_1, d_2}.
Idea to prove \(\dim M_{d_1,d_2} \leq p(\delta, k) \)

For any \(n \)-point set \(D = \{ (\alpha_1, \beta_1), \ldots, (\alpha_n, \beta_n) \} \subset \mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0} \)

Define \(\Delta(D) = \det[x_i^{\alpha_j} y_i^{\beta_j}]_{i,j} \), \(\text{bideg}(D) := (\sum \alpha_j, \sum \beta_j) \).

Then \(\{ \Delta(D) \}_{\text{bideg}(D)=(d_1,d_2)} \) generates \(M_{d_1,d_2} \).
Idea to prove \(\dim M_{d_1,d_2} \leq p(\delta, k) \)

For any \(n \)-point set \(D = \{(\alpha_1, \beta_1), \ldots, (\alpha_n, \beta_n)\} \subset \mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0} \)

Define \(\Delta(D) = \det[x_i^{\alpha_j} y_j^{\beta_j}]_{i,j}, \) \(\text{bideg}(D) := (\sum \alpha_j, \sum \beta_j). \)

Then \(\{\Delta(D)\}_{\text{bideg}(D)=(d_1,d_2)} \) generates \(M_{d_1,d_2}. \)

Example

3-point sets of bidegree (2, 1):

\[
D = \begin{array}{ccc}
1 & x_1^2 & y_1 \\
1 & x_2^2 & y_2 \\
1 & x_3^2 & y_3
\end{array} \quad \Delta(D) = \begin{vmatrix}
1 & x_1^2 & y_1 \\
1 & x_2^2 & y_2 \\
1 & x_3^2 & y_3
\end{vmatrix} \quad D' = \begin{array}{ccc}
1 & x_1 & x_1 y_1 \\
1 & x_2 & x_2 y_2 \\
1 & x_3 & x_3 y_3
\end{array} \quad \Delta(D') = \begin{vmatrix}
1 & x_1 & x_1 y_1 \\
1 & x_2 & x_2 y_2 \\
1 & x_3 & x_3 y_3
\end{vmatrix}
\]

Then \(\Delta(D), \Delta(D') \) generate \(M_{2,1}. \)

But such generators are redundant in general.
For a bidegree \((d_1, d_2)\) satisfying
\[
k := \binom{n}{2} - d_1 - d_2 << n,
\]
there are unique integers \(a_\mu\) such that
\[
\Delta(D) = \sum a_\mu \Delta(F_\mu) \text{ in } M
\]
where \(F_\mu = \) is an \(n\)-point set of bidegree \((d_1, d_2)\) and is of the form

```
• •
• •
• •
```

(in the example, the partition type is \(\mu = (2, 1, 5)\)).

In other words, \(\{\Delta(F_\mu)\}\) form a basis, for \(\mu\) runs through partition of \(k\) into at most \(\delta = \min(d_1, d_2)\) parts.

Therefore
\[
\dim M_{d_1, d_2} \leq p(\delta, k).
\]
Idea to prove \(\dim M_{d_1,d_2} \geq p(\delta, k) \) for \(k \leq n - 3 \).

For each \(D \), by adding sufficient many points, we get \(\tilde{D} \), such that \(\Delta(\tilde{D}) \) can be written uniquely as

\[
\Delta(D) = \sum a_\mu \Delta(F_\mu) \text{ in } M.
\]

Define

\[
\varphi(\Delta(D)) := \sum a_\mu \rho_\mu,
\]

where \(\rho_\mu = \rho_{\mu_1} \rho_{\mu_2} \cdots \rho_{\mu_\ell} \) for \(\mu = (\mu_1, \mu_2, \ldots, \mu_\ell) \).
Idea to prove $\dim M_{d_1, d_2} \geq p(\delta, k)$ for $k \leq n - 3$.

For each D, by adding sufficient many points, we get \tilde{D}, such that $\Delta(\tilde{D})$ can be written uniquely as

$$\Delta(D) = \sum a_\mu \Delta(F_\mu) \text{ in } M.$$

Define

$$\varphi(\Delta(D)) := \sum a_\mu \rho_\mu,$$

where $\rho_\mu = \rho_{\mu_1} \rho_{\mu_2} \cdots \rho_{\mu_\ell}$ for $\mu = (\mu_1, \mu_2, \ldots, \mu_\ell)$.

Define $\text{weight}(\rho_i) = i$. For $w \in \mathbb{Z}$, $f \in \mathbb{C}[[\rho_1, \rho_2, \ldots]]$, denote $\{f\}_w = \text{weight-}w$ part of f.

Lemma

$$\varphi(\Delta(D)) = (-1)^k \det \left[\left\{ (1 + \rho_1 + \rho_2 + \cdots)^{\beta_i} \right\}_{j-1-\alpha_i-\beta_i}^{i,j} \right]$$
Proposition

φ induces a linear map \(\bar{\varphi} : M \rightarrow \mathbb{C}[\rho_1, \rho_2, \ldots] \).
Proposition

\(\varphi \) induces a linear map \(\bar{\varphi} : M \rightarrow \mathbb{C}[\rho_1, \rho_2, \ldots] \).

For each partition \(\mu \in \Pi(\delta, k) \), we explicitly construct \(D_\mu \), s.t.

\[
LM \varphi(\Delta(D_\mu)) = \rho_\mu.
\]

\(\Rightarrow \) \(\{\bar{\varphi}(\Delta(D_\mu))\} \) are linearly independent

\(\Rightarrow \) \(\{\Delta(D_\mu)\} \) are linearly independent (since \(\bar{\varphi} \) is well-defined).

\(\Rightarrow \) \(\dim M_{d_1,d_2} \geq p(\delta, k) \) for \(k \leq n - 3 \).

\(\square \)
Summary:

- For $I = \cap(x_i - x_j, y_i - y_j)$, $M = I/(x, y)I$ arises in the study of $\text{Hilb}^n(\mathbb{C}^2)$. Its Hilbert series gives the q, t-Catalan number.

- $\dim M_{d_1, d_2} \leq p(\delta, k)$, where $k = \binom{n}{2} - d_1 - d_2$, $\delta = \min(d_1, d_2)$.

- For $k \leq n - 3$, above “=” holds, we find an explicit basis for M_{d_1, d_2}.
Summary:

- For $I = \cap(x_i - x_j, y_i - y_j)$, $M = I/(x, y)I$ arises in the study of $\text{Hilb}^n(\mathbb{C}^2)$. Its Hilbert series gives the q, t-Catalan number.

- $\dim M_{d_1, d_2} \leq p(\delta, k)$, where $k = \binom{n}{2} - d_1 - d_2$, $\delta = \min(d_1, d_2)$.

- For $k \leq n - 3$, above “=” holds, we find an explicit basis for M_{d_1, d_2}.

Ongoing research:

- Conjectural basis for M_{d_1, d_2}.

- Extend our method to the study of $I = \cap(x_i - x_j, y_i - y_j, z_i - z_j)$ and $\text{Hilb}^n(\mathbb{C}^3)$.

Li Li
Hilbert schemes of points