How to pronounce this name. Igor Mineyev's Math Page.

Candidate A is your favorite, but you are told that you must vote for a worse candidate B because your vote for candidate A would help the worst candidate C. Can you vote your conscience? Do you have to vote your fear?

This problem has a simple, purely mathematical solution: approval voting, or more general score voting. They are better than rank voting.

Will the politicians allow these voting systems? This is not a mathematical question.

I am a Professor at UIUC Math Dept. My mathematical interests include subjects related to geometric group theory, in particular,
  • hyperbolic groups, metric geometry, flows, CAT(0) and CAT(-1) spaces,
  • the Hanna Neumann conjecture and submultiplicativity,
  • the zero-divisor conjecture, the Atiyah problem,
  • various types of (co)homology of groups,
  • geometric and topological rigidity, conformal structures, geometric analysis,
  • 3-manifolds, relative hyperbolicity,
  • the Novikov conjecture, the Baum-Connes conjecture,
  • and many other incoherent things...
  • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .


Current teaching: to appear.


The mathematically correct name is "gee cube". As y'all know, G3 stands for the annual Geometric Group Theory on the Gulf Coast Conference, commonly abbreviated in various ways, like Geometric Groups on the Gulf. Depending on funding, the next G3 should take place in the spring of 2018.

Paper work
linfty-cohomology and metabolicity of negatively curved complexes. Internat. J. Algebra Comput. Vol. 9, No. 1(1999), 51-77.
Higher dimensional isoperimetric functions in hyperbolic groups. Math. Z. 233 (2000), no. 2, 327-345.
l1-homology of combable groups and 3-manifold groups. International Conference on Geometric and Combinatorial Methods in Group Theory and Semigroup Theory (Lincoln, NE, 2000). Internat. J. Algebra Comput. 12 (2002), no. 1-2, 341-355.
Straightening and bounded cohomology of hyperbolic groups. GAFA, Geom. Funct. Anal. 11(2001), 807-839.
Bounded cohomology characterizes hyperbolic groups. Quart. J. Math. Oxford Ser., 53(2002), 59-73.
The Baum-Connes conjecture for hyperbolic groups. Joint with Guoliang Yu. Invent. Math. 149 (2002) 1, 97-122.
Ideal bicombings for hyperbolic groups and applications. Joint with N. Monod and Y. Shalom. Topology 43 (2004), no. 6, 1319-1344.
Non-microstates free entropy dimension for groups. Joint with D. Shlyakhtenko. GAFA, Geom. Funct. Anal., 15 (2005), 476-490.
Flows and joins of metric spaces. Geometry and Topology, Vol. 9 (2005), no. 13, 403-482. Here is how to type Latex symbols for this article. Also the file on GT web page.
Metric conformal structures and hyperbolic dimension. Conform. Geom. Dyn. 11 (2007), 137-163. Also the published version.
Relative hyperbolicity and bounded cohomology. Joint with A.Yaman. Preprint.
The topology and analysis of the Hanna Neumann Conjecture. J. Topol. Anal. (JTA), 3(2011), no. 3, 307-376. If you would like to learn about the Hanna Neumann conjecture and its generalizations, read my three papers in the reverse order. (Read this paper third).
Submultiplicativity and the Hanna Neumann Conjecture. Ann. of Math., 175 (2012), no. 1, 393-414. Also a latex leafage picture. Another leafage picture. (Read this paper second).
Groups, graphs, and the Hanna Neumann Conjecture. J. Topol. Anal. (JTA), 4(2012), no. 1, 1-12. Here is the pictures-only version of this article. (Read this paper first).

Miscellaneous "Mathematics is a piece of cake: if you like it, you will get it."

"My theory is that no matter how hard people try to describe the real world, any theory would give only a rough approximation to the reality. Except for my theory."

"...a point has the non-zero zero homology and the zero non-zero homology..."

--I.V.Mineyev, hope-not-yet-complete works.

A Mathematician's Lament by Paul Lockhart.
What you hated in school was not mathematics.
A quote from teaching evaluations:
Instructor's weakness: high expectations.
Freedom. Another quote from teaching evaluations: Do not teach proofs. They are useless. Teach what needs to be done on the homework and tests.
A very important statement. Funny math pictures from V.Troitsky.

Department of Mathematics,
University of Illinois at Urbana-Champaign,
250 Altgeld Hall,
Urbana, IL 61801, USA.
Email address: mineyev math uiuc edu
Please don't get discoraged if I don't reply. I have email anxiety, and a mild form of keyboard incompatibility. I read email, but not regularly, and it takes time. Email also happens to be a distraction from deep thinking. I'm working on my email skills, it's a process. Meet me in person, I'm much nicer that way. :) If you want to write me something important, a regular mail letter might be a better option.