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Abstract. For first-order expansions of the field of real numbers, nondefinability of the
set of natural numbers is equivalent to equality of topological and Assouad dimension on
images of closed definable sets under definable continuous maps.

1. Introduction

We investigate relations between metric dimensions in real euclidean spaces and defin-
ability in expansions of R := (R,+, ·, (r)r∈R), the real field with constants for all real
numbers. The intended audience includes both mathematicians and logicians. The main
result is a dichotomy: Roughly, any given expansion of R either defines all real projective
sets or there is a striking agreement of various dimensions on an important subcollection
of the definable sets.

For readers familiar with basic first-order logic (FOL, for short), structures in a given
language, and expansions thereof, are defined as usual (see, e.g., Marker [24, 1.4.15]). As
the language of R contains a constant for each real number, there is no issue of whether
“definable” means “with parameters” or “without parameters” in expansions of R. We
identify interdefinable structures except when dealing with syntactic notions such as model
completeness.

We ultimately refer readers who are not familiar with FOL to van den Dries and Miller [8]
for an essentially FOL-free introduction to definability theory over R. However, we do give
here some needed definitions and conventions. First, a structure on a set X is a sequence
S := (Sm)∞m=1 such that for each m:

(1) Sm is a boolean algebra of subsets of Xm (the m-fold cartesian power of X).
(2) If S ∈ Sm, then S ×X,X × S ∈ Sm+1.
(3) If S ∈ Sm+1, then the projection of S on the first m coordinates is in Sm.
(4) If 1 ≤ i ≤ j ≤ m, then {x ∈ X : xi = xj } ∈ Sm.

A structure on R is a structure on R such that (the graphs of) addition and multiplication
belong to S3 and every real singleton {r} belongs to S1. (In the terminology of [8], a
structure on R is a structure on (R,+, · ) such that S1 contains every real singleton.) In
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this paper, we deal almost exclusively with structures on R, but it is often useful to know
that there is wider context.

We ask readers not familiar with FOL to take on faith that for every expansion R of R
in the sense of FOL there is a structure S (:= S(R)) on R such that each Sm consists
of the subsets of Rm that are definable in R, and for every structure S on R there is an
expansion R of R in the sense of FOL such that each Sm consists of the subsets of Rm that
are definable in R. Thus, for the purposes of this paper, readers can take “expansion of R”
to mean“structure on R” and definability to mean belonging to the appropriate Sm. (It
is crucial to understand that the notion of definability must always be taken with respect
to some given structure.) We regard maps as set-theoretic objects, so to say that a map
Rm ⊇ X → Rn is definable is to say that its graph is definable.

Expansions of R can be partially ordered by setting R ≤ R′ if every set definable in R
is definable in R′. There is a maximal element: Take each Sm to be the power set of Rm.
By definition, R is a minimal element. The subsets of Rm definable in R consist of the
semialgebraic sets in Rm, that is, finite unions of sets of the form

{x ∈ Rm : f(x) = 0, g1(x) > 0, . . . , gj(x) > 0 }

where f, g1, . . . , gj ∈ R[x1, . . . , xm]; cf. [8, 2.5.3]. We say that R and R′ are interdefinable
if R ≤ R′ and R′ ≤ R, equivalently, if S(R) = S(R′).

For any expansion R of R and sequence A := (Am)∞m=1 of collections Am of subsets of Rm

there is a minimal R′ ≥ R such that, for every m, every A ∈ Am is definable in R′. Rather
than declare notation for this level of generality, we shall use various ways to indicate
expansions of R by sets of interest. For example, if E ⊆ Rn, then we let (R, E) denote a
minimal R′ that defines E as well as every set definable in R.

The reader should now be able to apply [8] here as needed (begin with its second section
and first two appendices).

What can be said about the lattice (up to interdefinability) of all expansions of R? For
reasons that we shall not attempt to explain here, we regard this question as too vague
at best and intractable at worst. However, there are more reasonable versions, as we now
begin to explain.

The real projective hierarchy. Consider (R,N), the expansion of R by the set of non-
negative integers N. Logicians will immediately observe that Th(R,+, ·,N) is undecidable.
But much more is true: (R,N) defines every real Borel set (see, e.g., Kechris [21, (37.6)]),
hence also every real projective set in the sense of descriptive theory ([21, Chapter V]).
Thus, the definable sets of (R,N) comprise the real projective hierarchy. To put this an-
other way, the study of the definable sets of (R,N) is essentially classical descriptive set
theory. Thus, even set-theoretic independence can arise from seemingly-innocent questions
such as whether every set definable in (R,N) is Lebesgue measurable (Solovay [29]). Be-
cause of such complications, nondefinability of N is generally regarded as necessary for the
definability theory of any particular expansion of R to be analyzable by model-theoretic
methods.

The question arises: What can be said about expansions of R that do not define N? This
question underlies the “tameness program over R”; see the introduction of [26] for a more
detailed exposition. The main result of this paper (Theorem A, below) is one answer, but
we need a few more preliminaries for its statement.
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Unless indicated otherwise, the variables j, k, l,m, n, p range over N. Given a set X, its
power set is denoted by P(X) and its n-fold cartesian power by Xn, with X0 the one-point
set {0}. For convenience, we often identify Xm × Xn with Xm+n, and (Xm)n with Xmn;
in particular, Xm ×X0 ∼= X0 ×Xm ∼= Xm. By a coordinate projection of S ⊆ Xn we
mean the image of S under a map

(x1, . . . , xn) 7→
(
xλ(1), . . . , xλ(m)

)
: Xn → Xm

where 0 ≤ m ≤ n and λ : {1, . . . ,m} → {1, . . . , n} is strictly increasing. We usually say
just “projection” instead of “coordinate projection”.

If X is regarded as a subset of some topological space, then we denote its interior by
intX and closure by clX. We say that X: has interior if intX 6= ∅; has no interior if
intX = ∅; and is constructible if it is a boolean combination of open sets. If X is given
a topology, then Xn is always regarded in the product topology.

Given a topological space X, we define a sequence of functions

dimX :=
(
dimX,m : P(Xm)→ N ∪ {−∞}

)
m∈N

by letting dimX,mA (for A ⊆ Xm) be the supremum of all k ∈ N such that some projection
of A on Xk has interior. Observe that dimX,m ∅ = −∞ for all m ∈ N. We usually
suppress the subscripts, writing just dim instead of dimX,m. (Some ambiguity can then
arise—e.g., if X 6= ∅, then dimX,2X

2 = 2 and dimX2,1X
2 = 1—but intent should always

be clear from context.) We also tend to shorten “dim cl” to “dimcl”. Our use of “dim”
here conflicts with some of the dimension theory literature but is consistent with some
key model-theoretic sources that we cite (dim is often useful when dealing with structures
on X). Some properties (proofs are exercises):

(1) If A ⊆ Xm, then dimA = m if and only if A has interior.
(2) dim is increasing; i.e., dimA ≤ dimB for all m ∈ N and A ⊆ B ⊆ Xm.
(3) dim is stable on compact sets; i.e., dim(A∪B) = max(dimA, dimB) for all m ∈ N

and compact A,B ⊆ Xm.
(4) dim is logarithmic, that is, dim(A × B) = dimA + dimB for all A ⊆ Xm and

B ⊆ Xn.
(5) If A ⊆ X, then dimA = 0 if and only if A is nonempty and has no interior.
(6) dim is stable on constructible subsets of X.
(7) If X is a metric space, then dim ≤ dimH, where dimH denotes Hausdorff dimension.

(Hint for (6): constructible sets either have interior or are nowhere dense. Hint for (7):
dimH cannot increase under Lipschitz maps.)

Some global assumptions:

— we regard Rn in the usual box topology, but we also employ the usual notation and
conventions for working with the extended real numbers R ∪ {±∞};

— E denotes an arbitrary subset of an arbitrary Rn unless otherwise indicated (e.g.,
by explicitly writing “n = 1” or “E ⊆ R”);

— R denotes a fixed, but arbitrary, expansion of R;
— “definable” means “definable in R” unless indicated otherwise (possibly only by

context).

Many tameness conditions on R imply that every definable subset of R either has interior
or is nowhere dense, a condition that yields many desirable consequences for the definable
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sets; see [26]. It would take us too far afield to go into details here, but we do need one
basic result now:

1.1 (see [26, §7, Main Lemma]). The following are equivalent.

— Every definable subset of R has interior or is nowhere dense.
— dim = dimcl on all definable subsets of R.
— dim = dimcl on all definable sets.
— Every definable set either has interior or is nowhere dense.

Thus, the technical dimensional condition “dim = dimcl on all definable sets” corre-
sponds to a natural tameness condition on R, namely, that each definable set either have
interior or be nowhere dense. Nevertheless, whatever good properties dim or dimcl might
have, they cannot be regarded as interesting topological dimensions because dimX = 1 for
each fixed nonempty topological space X. This leads naturally to wondering what can be
said about R under assumptions on various topological or metric dimensions.

One classical dimension for topological spaces X is the small inductive dimension,
indX, defined inductively by: ind ∅ = −∞; for X 6= ∅, indX is the infimum of all k such
that, for every x ∈ X and open neighborhood V of x, there is an open U such x ∈ clU ⊆ V
and the boundary of U (regarded as a topological space via the subspace topology) has
ind < k. (Often, ind ∅ is defined to be −1, but we prefer −∞ for technical reasons.) The
definition is then extended to subsets of X by passing to the subspace topology. As with
dim, we tend to write indcl instead of ind cl. Although defined for every topological space,
ind is not particularly well behaved on all topological spaces, nor in this generality does
it bear any fixed relation (always ≤, always =, or always ≥) to certain other reasonable
notions of topological dimension. But heuristically, all reasonable notions of topological
dimension coincide on separable metrizable spaces (for more precision, see Engelking [9],
our primary reference for topological dimension theory). Thus, when working with subsets
of Rn, we are justified in regarding ind as the topological dimension.

The relation between ind and dim can be subtle, even in real n-spaces. While it is easy
to see that ind = dim on all subsets of R, we have only ind ≤ dim on all subsets of R2

(with inequality possible, even on compact sets), and each of dim < ind, dim = ind and
dim > ind occur even among the Gδ subsets of R3. On the other hand, ind ≤ dim on all
Fσ sets; in particular, indcl ≤ dimcl always. (See 2.3 for more details.) It is thus natural
to wonder what can be said about R if either ind = dim on all definable sets or ind = indcl
on all definable sets (cf. 1.1). We shall indeed produce some answers here, but because
we are thinking about R as a metric space, we prefer to bypass this level of generality in
favor of “dimensional coincidences” of dim or ind with various metric dimensions. We do
have a particular metric dimension in mind, called Assouad dimension by some, but we
postpone (to Section 4) giving the definition as we think its technical nature would only
be distracting at this point; for now, we only list enough of its basic properties over real
n-spaces to justify our interest.

1.2. There is a sequence Dim :=
(
Dimm : P(Rm) \ {∅} → [0,∞)

)
m∈N such that for all

m ∈ N:

(1) Dimm = m on nonempty open subsets of Rm.
(2) Dimm is increasing.
(3) Dimm is stable on closed sets.
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(4) Dimp f(A) = DimmA for all A ⊆ Rm, p ∈ N and bi-Lipschitz maps f : A → Rp

(Lipschitz invariance).
(5) Dimm = Dimm cl (closure invariance).
(6) Dimm ≥ dimM on bounded sets, where dimM denotes upper Minkowski dimension.
(7) Dim1{ 1/k : 0 6= k ∈ N } = 1.

As with dim, we tend to suppress the subscripted m. We shall also have Dim ∅ = −∞.

The reader need not yet know the definition of dimM (also given in Section 4); its appear-
ance here is only to lend credence to an empirical heuristic: If E 6= ∅ and indE = DimE,
then all dimensions commonly encountered in geometric measure theory, fractal geometry
and analysis on metric spaces are equal on E.∗ We refer the reader to Luukkainen [23] for
history and explanations of technical significance (but there, ind is denoted by dim, Dim
by dimA, and dimM by dimB). Further information on metric dimension theory can be
found in Falconer [10] and Mattila [25] (but there is no mention of Assouad dimension, and
again, notation and conventions vary).

Remarks. (a) We might reasonably demand that the first four properties of 1.2 hold in order
for a sequence of functions

(
P(Rm) \ {∅} → [0,∞)

)
m∈N to be considered as a system of

metric dimensions for real euclidean spaces, but preservation under closure (which renders
superfluous the phrase “on closed sets” in the third property) fails for dimH. (b) It is
known that dimM satisfies the first five properties on bounded sets, but dimM{ 1/k : 0 6=
k ∈ N } = 1/2. (c) If E 6= ∅ and dimE = DimE, then heuristically, all metric dimensions
should agree on E. (It is a routine consequence of dimM ≤ Dim on bounded sets that
dimH ≤ Dim, and recall that dim ≤ dimH.)

We are now ready to state our main result:

Theorem A. If R does not define N, then ind = Dim = dim on projections of closed
definable sets.

An equivalent local version:

Theorem A′. If E is closed, f : E → Rp is continuous, and (R, f) does not define N, then
ind f(E) = Dim f(E) = dim f(E).

(By basic definability, the conclusion of Theorem A is equivalent to ind = Dim = dim on
images of closed definable sets under definable continuous maps.) Heuristically: In order
for the definability theory of R to be amenable to model-theoretic methods, we must have
ind = Dim = dim at least on all images of closed definable sets under definable continuous
maps.

It is easy to see that the converse of Theorem A holds, indeed, if either Dim = 0 on all
countable compact definable subsets of R or ind ≥ dim on all compact definable subsets of
R2, then R does not define N. For the former, recall 1.2.5 and 1.2.7; for the latter, see 2.4
below. We now collect a few easy applications of Theorem A to the tameness program.

1.3. Corollary. If indE 6= DimE, then either indE 6= indclE or (R, E) defines N.

Proof. If (R, E) does not define N, then ind clE = Dim clE by Theorem A. Recall that
Dim = Dimcl. �
∗Conventions for dealing with dimensions of ∅ vary in the literature.
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Heuristically: If any of the commonly-encountered metric dimensions fail to coincide on
E, it is only because E is topologically noisy or it encodes enough information to define
(over R) all real projective sets.

We can add another condition to 1.1:

1.4. Corollary. Every definable subset of R has interior is nowhere dense if and only if
dim = Dim on all definable sets.

Proof. Suppose that every definable subset of R has interior is nowhere dense. Then R
does not define Q, hence neither N, so dimcl = Dimcl = Dim on all definable sets. By 1.1,
we also have dimcl = dim on all definable sets. Hence, dim = Dim on all definable sets.

The converse is immediate from Dimcl = Dim. �

We can now address some issues raised earlier:

1.5. Corollary. The following are equivalent.

(1) ind = Dim on all definable sets.
(2) ind = indcl on all definable sets.
(3) ind = dim = Dim on all definable sets.
(4) ind = dim on all definable sets.
(5) ind ≥ dim on all definable sets.

Proof. (1)⇒(2) is immediate from Dimcl = Dim.
(2)⇒(3). If ind = indcl on all definable sets, then R does not define Q, hence neither N,

so indcl = Dimcl = dimcl on all definable sets by Theorem A. Thus, ind = Dim = dimcl
on all definable sets. Since ind = dim on all subsets of R, we also have dim = dimcl on all
definable sets by 1.1, and so ind = Dim = dim on all definable sets.

(5)⇒(1). Assume that ind ≥ dim on all definable sets. As mentioned earlier, indcl ≤
dimcl always, so dim ≤ ind ≤ dimcl on all definable sets. Hence, it suffices by 1.1 and 1.4 to
show that every definable subset of R has interior or is nowhere dense; if not, there would
be a definable subset of R whose characteristic function has ind = 0 and dim = 1. �

We do not know whether the above are also equivalent to dimcl = dim on all definable
sets, but we do have a partial answer:

1.6. Corollary. If R defines no Cantor subsets of R and dim = dimcl on all definable
subsets of R, then ind = Dim = dim on all definable sets.

(By “Cantor” we mean nonempty, compact, totally disconnected, and no isolated points.)

Proof. By 1.5, it suffices to show that dim ≤ ind on all definable sets. It is an exercise that
the assumption is equivalent to: Every nonempty definable subset of R has interior or an
isolated point. Suppose that E is definable. By [26, 3.4], after permutation of coordinates
there is a box U ⊆ RdimE and a continuous map U → Rn−dimE whose graph is contained
in E. Hence, dimE ≤ indE. �

There are expansions of R that define Cantor sets and every definable subset of R has
interior or is nowhere dense; see Friedman et al. [15], and [20]. We do not know whether
any of them satisfy dim ≤ ind on all definable sets.

It is immediate from Theorem A that if every definable set is a projection of a closed
definable set, then ind = Dim = dim on all definable sets. We can do better:
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1.7. Corollary. If every definable subset of R is Fσ, then ind = Dim = dim on all definable
sets.

Proof. By 1.6, it suffices to show that then every definable subset of R has interior or is
nowhere dense, and no Cantor subsets of R are definable.

Let A ⊆ R be definable and dense in a nonempty open interval I. Since both I ∩A and
I \A are definable, they are each Fσ by assumption. As I \A has no interior, it is meager
(in the sense of Baire). Hence, I ∩ A is nonmeager, and thus has interior.

If A ⊆ R is a Cantor set, then the complement in A of the set of left endpoints of
the complementary intervals of A is definable (exercise) and not Fσ (because it is both
comeager and codense in the closed set A). �

In particular,

1.8. Corollary. If every definable subset of R has interior or is countable, then ind =
Dim = dim on all definable sets.

There are many examples of R such that every definable subset of R has interior or is
countable. Indeed, there are many examples such that every definable subset of R has
interior or is finite (o-minimality)—see [8] for just a few—but there are also examples that
define countably infinite sets; for some, see van den Dries [6], Friedman and Miller [16,17],
Miller and Tyne [28], [26], and 5.1 below.

Two important precursors to this paper should be mentioned even though there is no
formal dependence. (i) In joint work with Fornasiero [13], we established that if E ⊆
R is nonempty, bounded and nowhere dense, then (R, E) avoids defining N if and only
if dimME = 0. Ideas from the proof† play a crucial role in the proof of Theorem A.
(ii) Fornasiero announced in [12] a weaker version of Theorem A, namely, that it holds
with dimH in place of Dim (subject to the usual proviso that dimH ∅ is often defined to
be 0). Thus, it would suffice for us here to show just that dimH = Dim on all projections
of nonempty closed definable sets if R does not define N. But we have not been able
to accomplish this, as we do not know of any appropriately useful criteria for checking
dimH = Dim. Neither does Fornasiero’s proof generalize to Dim as it relies on some
properties of dimH that are known to fail for Dim. On the other hand, we could appeal
to [12] for the “ind = dim” part of Theorem A, but this is relatively easy; we shall give our
own proof (2.15) as a natural step toward establishing Theorem A.

Here is an outline of the rest of this paper. Section 2 consists of some technical prelimi-
naries, mostly topological, culminating in the proof of the “ind = dim” part of Theorem A.
While the proof of the “dim = Dim” part of Theorem A requires an actual definition of
Dim, the cases n = 1 and dim = 0 require only two easily-stated properties beyond those
of 1.2, and the proofs illustrate some key ideas needed for the proof of Theorem A as
a whole. Hence, with an eye toward possible generalization, we present in Section 3 an
axiomatic proof of these basic cases. We also dispose of the trivial (relative to existing
technology) case that R defines no infinite discrete closed subsets of R. In Section 4, we
give the definitions of Dim and dimM, and prove Theorem A via a more technical result
(Theorem B). We conclude in Section 5 with a few remarks.

†One of which, as noted in [13], was communicated to Miller by K. Falconer in personal correspondence.
It was also Falconer who first drew our attention to Assouad dimension.
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2. Preliminaries

Let X, Y be sets. Given f : X → Y and S ⊆ X, we let f�S denote the restriction of f
to S. We identify a function f : X0 → Y with the constant f(0) ∈ Y . Given Z ⊆ X × Y
and x ∈ X, we put Zx := { y ∈ Y : (x, y) ∈ Z }; this notation will be used primarily in
settings where both X and Y are finite cartesian powers of R, but it can also be used to
resolve any potential ambiguity caused by the usual kinds of subscripting of indices that
arise in mathematical exposition. If Y is a product Y1 × Y2 and (x, u) ∈ X × Y1, we tend
to abbreviate Z(x,u) by Zx,u; then (Zx)u = Zx,u.

If (X, d) is a metric space, then Xn is assumed to be equipped with the sup metric
(a, b) 7→ sup{ d(ai, bi) : i = 1, . . . , n}. In particular, we use the sup norm |a| := sup{|ai| :
i = 1, . . . , n} in Rn.

For our purposes, intervals (in R) always have interior. The usual notation is employed
for the various kinds of intervals. We sometimes write R>0 or (0,∞) instead of (0,+∞).
The interval [0, 1] is denoted by I. A box in Rn is an n-fold product of open intervals, and
a closed box is a product of closed intervals.

The set E is discrete if all of its points are isolated, locally closed if it is open in its
closure, and dense in C ⊆ Rn if cl(C ∩ E) = cl(C).

2.1. Some basic properties of ind in Rn ([9, 1.8]):

(1) indE = n if and only if E is nonempty and open.
(2) ind is increasing.
(3) ind is countably stable on closed sets, that is, ind

⋃
k∈N Fk = maxk∈N indFk for

any sequence (Fk)k∈N of closed subsets of Rn. (Hence, if E is Fσ, then indE is
realized on some compact subset of E.)

(4) ind is sublogarithmic, that is, if A ⊆ Rj and B ⊆ Rk, then ind(A × B) ≤
indA+ indB.

(5) ind f(E) = indE for homeomorphisms f : E → f(E) ⊆ Rp and p ∈ N (topological
invariance).

2.2. More on dim in Rn (proofs are exercises):

(1) dim is countably stable on closed sets (by the Baire Category Theorem).
(2) For k ≤ m ≤ n and ∗ in {≤,≥,=, <,>}, the set {x ∈ Rm : dimEx∗k } is definable.

Note to logicians: (3) holds with “∅-definable in (R, <,E)” instead of “definable in R”.

2.3. Some relations between dim and ind in Rn (proofs are exercises):

(1) ind = dim on subsets of R.
(2) dimE = 0⇒ indE = 0.
(3) ind ≤ dim on subsets of R2.
(4) ind ≤ dim on compact sets [9, Exercise 1.8.C].
(5) ind ≤ dim on Fσ sets.
(6) indcl ≤ dimcl.

(For (5), use (4) and that ind and dim are countably stable on closed sets.)

Remark. There are Gδ sets in R3 such that ind > dim; see [9, 1.10.23].

2.4. If C is the standard “middle-thirds” Cantor set, then ind{ (x−y, x+y) : x, y ∈ C } = 0
and dim{ (x − y, x + y) : x, y ∈ C } = 1 (recall that the difference set of C has interior).
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Hence, strict inequality is possible in 2.3.3 even on compact sets. This also shows that dim
is not necessarily preserved under isometries. (This elegant example was brought to our
attention by A. Fornasiero.)

2.5. We shall have need later for notions of uniformity for collections of sets. Given a set
X, we say that a map f : P(P(X)) → R ∪ {±∞} is increasing if f(A) ≤ f(B) for all
A,B ⊆ P(X) such that A is a refinement of B, and stable if

f({A ∪B : (A,B) ∈ A×B }) = max(f(A), f(B))

for all A,B ⊆ P(X). There are obvious modifications of “logarithmic” and “sublogarith-
mic” for cartesian products. For illustrative purposes, if X is a topological space, then we
put dimA = sup{ dimA : A ∈ A } for A ⊆ P(Xm), suppressing the subscript on dimm as
usual. Some easy basic facts:

— dimA = dim{A} for all A ⊆ Xm.
— If A ⊆ P(Xm), then dimA = m if and only if some A ∈ A has interior.
— If A ⊆ P(X), then dimA = 0 if and only if some A ∈ A is nonempty and no A ∈ A

has interior.
— dim is increasing.
— dim is stable on the collection of compact subsets of Xm.
— dim is logarithmic.

The open core of R, denoted by R◦, is the expansion of the set R by all open sets (of
any arity) definable in R. (Equivalently: R◦ is identified with the smallest structure S
on R such that each Sm contains every open subset of Rm definable in R.) Some easy
observations:

2.6. (1) R◦ is interdefinable with the expansion of R by all projections of closed sets
definable in R.

(2) R defines N if and only if R◦ defines N if and only R◦ is interdefinable with (R,N).

The expansion R is o-minimal if every definable subset of R is a finite union of points
and open intervals. O-minimal expansions of R are often regarded as the best-behaved
expansions of R, indeed, they have so many nice properties that it takes several pages just
to state even the most important ones; see, e.g., [8, §4]. It is immediate from definitions
that

2.7. R is o-minimal if and only if R◦ is o-minimal and every subset of R definable in R has
interior or is nowhere dense.

More substantial:

2.8. R◦ is o-minimal if and only if R defines no infinite discrete closed subsets of R.

Proof. The forward implication is immediate from definitions. Suppose that every discrete
closed subset of R definable in R is finite. By [19, Lemma 2] every discrete subset of R
definable in R is finite. By Miller and Speissegger [27, Theorem (b)], R◦ is o-minimal. �

For some examples of non-o-minimal expansions of R having o-minimal open core, see:
Belegradek and Zilber [1]; Dolich, Miller and Steinhorn [3, 1.11 and 1.12] and [4]; van den
Dries [7, Theorem 5]; Günaydın and Hieronymi [18]; and [27, 4.2].
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Projections of closed definable sets. Following [27], we let DΣ(n) denote the collection
of all subsets of Rn that are projections of closed definable sets. If the ambient Rn is
irrelevant or understood from context, then we usually write just DΣ. (Thus, we can now
state the conclusion of Theorem A as “ind = Dim = dim on DΣ”.) In this subsection, we
review some basic known facts and establish a key technical result (2.15) that disposes of
the “ind = dim” part of Theorem A.

Remark. As every DΣ set is Fσ, one might be tempted to think of “DΣ” as abbreviating
“definably Fσ”, but caution is in order, as there at least two other reasonable notions for
this: (i) definable and Fσ; (ii) definable and a countable union of closed definable sets. In
general, these notions differ from DΣ, as well as from each other.

2.9. (1) DΣ is closed under projection, cartesian product, union and intersection.
(2) Every constructible definable set is DΣ.
(3) If Z ∈ DΣ(m+ n) and x ∈ Rm, then Zx ∈ DΣ(n).

Proof. (1). Closure under projection is immediate from definition, and closure under carte-
sian product is nearly so. We now deal with unions and intersections. Let E1, E2 ∈ DΣ(n).
For i = 1, 2, let Fi ⊆ Rpi be closed and definable such that Ei is a projection of Fi. By
permutation of coordinates, we may assume that Ei is the projection of Fi on the first n
coordinates. After embedding into a common Rp, we may take p1 = p2 = p. Then E1 ∪E2

is the projection on the first n coordinates of F1 ∪F2, and E1 ∩E2 is the projection on the
first n coordinates of

{ (x, y, z) ∈ Rn+2p : (x, y) ∈ F1 & (x, z) ∈ F2 }.
(2). By Dougherty and Miller [5], every constructible definable set is a boolean combi-

nation of open definable sets. Hence, as DΣ contains all closed definable sets and is closed
under unions and intersections, it suffices to show that all open definable sets are DΣ. If E
is open (or even just locally closed), then it is the projection on the first n coordinates of

{ (x, t) ∈ E × R : t dist(x, (clE) \ E) ≥ 1 }. �

(3). Zx is the projection of Z ∩ ({x} × Rn) on the last n coordinates.

DΣ need not be closed under complementation; indeed, complements of DΣ sets need
not be Fσ (e.g., if R defines N, then Q is DΣ and R \ Q is not Fσ). If DΣ is closed under
complementation, then DΣ = S(R◦). An aside to logicians:

2.10. E is DΣ if and only if E is existentially definable in R◦. The following are equivalent.

— DΣ is closed under complementation.
— Th(R◦) is model complete.
— Every set definable in R◦ is DΣ.

We use the next result often.

2.11. The following are equivalent.

(1) E is DΣ.
(2) There is a definable X ⊆ R>0 × Rn such that E =

⋃
r>0Xr and (Xr)r>0 is an

increasing family of compact sets.
(3) E is the projection on the first n coordinates of a closed definable F ⊆ Rn+1.
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(4) There are a closed definable F ⊆ Rn+1 and a surjective continuous definable map
f : F → E.

(5) There are a closed definable F ⊆ Rp and a surjective continuous definable map
f : F → E.

Proof. For (1)⇒(2), if E is the projection πF of a closed definable F ⊆ Rp, then put
X = { (r, x) : x ∈ π(F ∩ [−r, r]p) }. For (2)⇒(3), let F be the closure of { (x, r) ∈ Rn+1 :
x ∈ Xr }. The rest is routine. �

2.12. If E is DΣ, then {x ∈ Rm : dimEx ≥ k } is DΣ.

Proof. As DΣ is closed under finite unions and permutation of coordinates, it suffices to let
π be a projection Rn−m → Rk and show that S := {x ∈ Rm : π(Ex) has interior } is DΣ.
Write E =

⋃
r>0Xr as in 2.11; then

S =
⋃
r>0

{x ∈ Rm : ∃y ∈ Rk
∏k

i=1[yi, (1 + 1/r)yi] ⊆ π(Xr,x) }.

Let x ∈ Rm and r > 0. As Xr is compact, so is π(Xr,x), hence so is

{x ∈ Rm : ∃y ∈ Rk
∏k

i=1[yi, (1 + 1/r)yi] ⊆ π(Xr,x) }.

The result follows. �

We say that a map f is DΣ if it is DΣ as a set (that is, if its graph is DΣ).

2.13. If f : E → Rp is DΣ, then so are E, f(E), and f−1(Y ) for every Y ∈ DΣ(p).

Proof. Observe that E is the projection of f on the first n coordinates, f(E) is the projection
of f on the last p coordinates, and f−1(Y ) is the projection on the first n coordinates of
f ∩ (Rn × Y ). �

Given f : E → Rp, we let D(f) denote the set of all x ∈ E such that f is discontinuous
at x. For s > 0, we let D(f, s) be the set of x ∈ E such that the oscillation of f at
x (defined as is usual in analysis) is at least s. Observe that D(f, s) is closed in E and
D(f) =

⋃
s>0 D(f, s). If f is definable, then so is D(f, s).

2.14. If E is DΣ and f : E → Rp is definable, then D(f) is DΣ.

Proof. If E =
⋃
r>0Xr as in 2.11, then D(f) =

⋃
r>0 D(f�Xr, 1/r). �

Recall that a closed box in Rn is the closure of a nonempty open box in Rn. We define
rectangular partitions of closed boxes by induction: A rectangular partition of a closed
interval B ⊆ R is a finite cover of B by closed subintervals whose interiors are pairwise
disjoint; a rectangular partition of a closed box B ⊆ Rn+1 is the cartesian product of a
rectangular partition of the projection of B on the first n variables with a rectangular
partition of the projection of B on the last variable.

Next is a key technical result.

2.15. Proposition. The following are equivalent.

(1) R does not define N.
(2) For all definable h : Ap → R such that A ⊆ R is discrete, h(Ap) is nowhere dense.
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(3) If E is DΣ, then for every m ≤ n and closed box B ⊆ Rn−m there is a rectangular
partition P of B such that for each u ∈ Rm there exists P ∈ P disjoint from
Eu \ int(Eu).

(4) Each DΣ either has interior or is nowhere dense.
(5) ind = dim on DΣ.
(6) ind ≥ dim on all compact definable subsets of R2.

(The implication (1)⇒(3) can be regarded as a uniform version of (1)⇒(2), which is a
theorem on its own; see [19].)

Proof. (1)⇒(2) is a special case of [19, Theorem A].
(2)⇒(3). By replacing E with R× E, we may assume that m > 0. The result is trivial

if m = n, and an easy induction allows us to reduce to the case that n = m + 1, that is,
each Eu ⊆ R.

We first do the case that E is bounded. Since DΣ is closed under intersection and
continuous definable maps, we reduce to the case that E ⊆ Im+1 and B = I (recall that
I = [0, 1]). It suffices now to find ε > 0 such that if u ∈ Im, then at least one of Eu or
I \ Eu contains an interval of length ε. This follows easily from cell decomposition (see,
e.g., [8, 4.2]) if R◦ is o-minimal, so assume that R◦ is not o-minimal. By 2.8, R defines an
infinite discrete closed D ⊆ R>0, and we have E =

⋃
r∈DXr where (Xr)r∈D is an increasing

definable family of compact sets. Define Y, Z ⊆ D2 × Im by u ∈ Yr,s if Xr,u contains an
interval of length 1/s, and u ∈ Zr,s if every interval contained in I \ Xr,u has length at
most 1/s. It suffices to show that there is some r ∈ D such that Zr,s \ Yr,s = ∅ for every
s ∈ D ∩ (r,∞); suppose this fails. Then we have a definable function α : D → D given by

α(r) = min{ s ∈ D ∩ (r,∞) : Zr,s \ Yr,s 6= ∅ }.

Observe that for every r ∈ D, both Yr,α(r) and Zr,α(r) are compact (for the former, recall
the proof of 2.12). Let r ∈ D. If Zr,α(r) ∩ Yr,α(r) = ∅, let β(r) be the lexicographic
minimum of Zr,α(r). If Zr,α(r) ∩ Yr,α(r) 6= ∅, let β(r) be the lexicographic minimum of all
u ∈ Zr,α(r) such that the distance of u to Yr,α(r) is maximal. Then β : D → Rm is definable
and β(r) ∈ Zr,α(r) \ Yr,α(r) for all r ∈ D. Since Xr is closed, so is Xr,u \ int(Xr,u). Define
M ⊆ D×Im×I by (r, u, t) ∈M if and only t is a midpoint of a complementary-in-I interval
of Xr,u \ int(Xr,u). Let σ(r) be the successor of r in D, that is, σ(r) = min(D ∩ (r,∞)).
Now M is definable, each Mr,u is discrete, and the image of Mα(r),β(r) under the function
x 7→ r + (σ(r) − r)x : R → R is discrete and contained in the interval (r, σ(r)). Let A
be the union of all such sets as r ranges over D; then A is discrete and definable, and for
every a ∈ A there are unique r ∈ D and t ∈ Mα(r),β(r) such that a = r + (σ(r) − r)t. Let
g : M → R be given by (r, u, t) 7→ sup((Xr,u \ int(Xr,u)) ∩ (−∞, t]), that is, g(r, u, t) is the
left endpoint of the complementary-in-I interval of Xr,u \ int(Xr,u) that contains t. Then
g is definable and, for each (r, u), the image g(r, u,Mr,u) is dense in Xr,u \ int(Xr,u). Let
h : A→ R send r+(σ(r)−r)t in A to g(α(r), β(r), t); then h is definable and h(A) is dense
in I, contradicting (2). (This finishes the case that E is bounded.)

If E is not bounded, apply the result to the image of E under the map

x 7→
(
x1(1 + x2

1)−1/2, . . . , xn(1 + x2
n)−1/2

)
and then pull back.

For (3)⇒(4), set m = 0.
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(4)⇒(5). Suppose that every DΣ has interior or is nowhere dense. Let E be DΣ; we
must show that dimE = indE. By countable stability, it suffices to consider the case that
E is compact. Since ind ≤ dim on compact sets, it suffices to show that indE ≥ dimE.
By permuting coordinates, we reduce to the case that the projection of E on the first
dimE coordinates contains a box V . Define f : V → Rn−dimE by letting f(v) be the
lexicographic minimum of Ev. By basic real analysis (or cf. [2, 2.8]), D(f) has no interior;
by 2.14 and (4), it is nowhere dense. Thus, there is a box U ⊆ V such that f�U is
continuous, and so u 7→ (u, f(u)) maps U homeomorphically onto the graph of f�U . Hence,
indE ≥ ind(f�U) = dimE.

For (6)⇒(1), recall 2.4 and that (R,N) defines all Borel sets. �

3. Prelude to proof of Theorem A

We establish in this section some basic cases of Theorem A whose proofs use at most
two more properties of Dim in addition to those listed in 1.2. We do this for two reasons:
(i) certain key ideas are well illustrated in this simple setting; (ii) there may be other
notions of metric dimension beyond Dim amenable to the same proofs. Recall that by 2.15
we have already disposed of the ind = dim part of Theorem A.

3.1. If R◦ is o-minimal, then dim = Dim on DΣ.

Proof. Since every DΣ is definable in R◦, it suffices to show that if R is o-minimal and E
is definable, then DimE = dimE. By Kurdyka and Parusiński [22] (or see Fischer [11]),
there exist N ∈ N and bi-Lipshitz maps fi : Ui → Rn for i = 1, . . . , N such that E is the
union of the fi(Ui), each Ui is open in Rn(i), and n1 ≤ · · · ≤ nN = dimE. By Lipschitz
invariance, Dim fi(Ui) = DimUi = n(i); by stability, DimE = max{ni : i = 1, . . . , N } =
nN = dimE. �

Remark. The proof suggests that if R is o-minimal then any reasonable notion of metric
dimension would always coincide with dim (hence also ind) on all definable sets.

Next we dispose of the dim 0 case.

3.2. If E ∈ DΣ and 0 = dimE < DimE, then R defines N.

We require for the proof two more properties of Dim in addition to the first five listed
in 1.2:

3.3. There exists s > 1 such that DimA2 ≥ sDimA for all definable A ⊆ R.

3.4. If A ⊆ R is definable and DimA = 0, then DimAk = 0.

(Indeed, DimEk = kDimE always, but we do not yet need this.)

3.5. If A ⊆ R is definable and DimA > 0, then there exist N ∈ N and F : RN → R
definable in R such that F (AN) is dense.

(Definability of A is superfluous if one is interested only in Assouad dimension; see
Remark (ii) below after the proof.)

Proof. Let Q : R4 → R be given by

Q(x) =

{
(x1 − x2)/(x3 − x4), x3 6= x4

0, x3 = x4
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We are done if Q(A4) is dense, so assume otherwise. Then the vector-difference set of A2

is disjoint from some open double cone C ⊆ R2 centered at the origin. Let ` be the line
through the origin perpendicular to the axis of C and let π be the orthogonal projection
of R2 onto `. The restriction of π to A2 is bi-Lipschitz, and so Dimπ(A2) = DimA2 ≥
sDimA, where s is as in 3.3. Let θ be the rotation of the plane taking ` to the real line;
then Dim(θ ◦ π(A2)) ≥ sDimA. We now have a linear function T1 : R2 → R such that
DimT1(A2) ≥ sDimA. We are done if Q([T1(A2)]4) is dense, so assume otherwise, and
repeat the process above to obtain a linear function T2 : R2 → R that maps [T1(A2)]2 to a
set having Dim at least s2 DimA. Since 0 < DimA ≤ 1 < s, we obtain after finitely many
repetitions of this procedure some m ∈ N and linear T : Rm → R such that Q(T (Am)4) is
dense, thus producing F as desired. �

Remarks. (i) Up to the choice of the various finitely many cones C (equivalently, the
rotations θ) the construction of F depends only on the least k ∈ N such that sk DimA > 1.
(ii) As mentioned earlier, DimEk = kDimE always. Hence, we could apply 3.5 to R =
(R, A) with s = 2, and so the assumption of definability is not essential for the conclusion.

Proof of 3.2. Let E ∈ DΣ and 0 = dimE < DimE. We must show that R defines N.
First, suppose that E ⊆ R. If E is somewhere dense, then N is definable by 2.15, so

assume that E is nowhere dense. Then dimclE = 0, so it suffices to consider the case that E
is closed (since Dim = Dimcl). LetD be the set of midpoints of the bounded complementary
intervals of E, together with 1 + maxE if E is bounded above. Then D is discrete and the
function g : D → R mapping t ∈ D to the left endpoint of the complementary interval of
E that contains t is definable. As E is closed and has no interior, g(D) is dense in E, so
Dim g(D) > 0 (because Dimcl = Dim). With F as in 3.5 applied to A = g(D), we have
that F (g(D)N) is somewhere dense. Hence, there exists m ∈ N and definable h : Dm → R
such that h(Dm) is somewhere dense. By 2.15, R defines N.

We now dispose of the general case. For i = 1, . . . , n, let πiE be the projection of E on
the i-th coordinate; then πiE ∈ DΣ(1) and dimπiE = 0. As E ⊆ (

⋃n
i=1 πiE)n, we have

DimE ≤ nmax(DimπiE) by 3.4 and stability. Hence, Dim πiE > 0 for some i, and so R
defines N by the previous paragraph. �

As an immediate corollary of 3.2,

3.6. The following are equivalent.

— R does not define N.
— dim = Dim on all dim 0 DΣ sets.
— dim = Dim on all DΣ sets in R.

(Recall that Dim{ 1/k : 0 6= k ∈ N } 6= 0.)
This is about as far as we can get by using only easily-stated basic facts like 3.3, 3.4 and

those of 1.2, but a bit more discussion will help motivate some of the technicalities coming
in the next section. As we shall see, Dim(A × B) ≤ DimA + DimB for all A ∈ Rj and
B ∈ Rk. Hence, if the projection πE of E on the first m coordinates has interior and the
projection τE of E on the last n −m coordinates has Dim 0, then DimE = dimE. But
the case Dim τE = 0 will be exceptional, so what can be said in general? Assume that E is
DΣ and R does not define N. It is easy to see via the Baire Category Theorem that the set
{x ∈ Rm : dimEx > 0 } is meager; as it also DΣ (2.12), it is nowhere dense by 2.15. Then
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{x ∈ Rm : dimEx = 0 } has interior, so by monotonicity, stability and 3.2, we may reduce
to the case that DimEx ≤ 0 for all x ∈ Rm. One can now imagine that under appropriate
inductive assumptions we should be able to reduce to the case that n = m + 1, and even
that for every permutation σ of coordinates, πσE has interior and Dim((σE)x) ≤ 0 for
every x ∈ Rm. But here our naive axiomatic approach seems to stall, even for n = 2. (The
reader who wishes to get an idea of the difficulties should consider trying to show now that
if g : [0, 1]→ R is continuous and (R, g) does not define N, then Dim g = 1.)

4. Dim, dimM, and the proof of Theorem A

Given a metric space (X, d), S ⊆ X and r > 0 put

netr S = sup
k∈N
∃x1 . . . xk ∈ S,

∧
i 6=j

d(xi, xj) ≥ r.

The Assouad dimension of S, denoted in this paper by DimS, is the infimum of α ∈ R
such that the set

{ (r/R)α netr{ y ∈ S : d(y, x) ≤ R } : x ∈ S, 0 < r < R < +∞}
is bounded. Our primary source for information on Dim is [23], but there: (a) Dim is
denoted by dimA, ind by dim, and our notion of dim is not used in any explicit sense;
(b) the infimum is taken over α ≥ 0 (and so dimA ∅ = 0, as opposed to Dim ∅ = −∞
by our definition). In addition to the properties listed in 1.2, Dim is sublogarithmic and
logarithmic on cartesian powers.

Recall that by 2.15 our goal is to show that Dim = dim on DΣ if R does not define N.
It turns out to be convenient to work with another notion of dimension for collections of
sets. We define the upper Minkowski dimension of S ⊆ P(X) by

dimMS = lim
r↓0
S∈S

log netr S

− log r
,

(with log(0) = −∞ and log(+∞) = +∞), that is, dimMS is the supremum of all α ∈
[−∞,+∞] for which there is a sequence (rk) of positive real numbers and a sequence
(Sk) of elements of S such that limk→+∞ rk = 0 and limk→+∞(log netrk Sk)/(− log rk) = α.
For S ⊆ X, we write dimMS instead of dimM{S}. There are many different names for,
and equivalent formulations of, dimM on sets in the literature; it is often defined only for
nonempty totally bounded sets S. (In [23], dimM on sets is denoted by dimB and is called
the upper box-counting box dimension.)

Note. Equivalent metrics yield the same dimM (and Dim). Indeed, if f : (0, δ) → R
and 0 < a < b ∈ R are such that af(r) ≤ netr S ≤ bf(r) for all r ∈ (0, δ), then
dimMS = limr↓0(log f(r))/(− log r). These observations allow for switching between al-

ternate definitions of dimM (and Dim) as convenient; see [10, 3.1] for more details.
We shall obtain Theorem A from the following more technical result.

Theorem B. If R does not define N and E is DΣ and bounded, then

dimM{Ex : x ∈ Rm & dimEx = d } ≤ d, d = 0, . . . , n−m.

We begin to work toward the proof by listing some basic properties of dimM in arbitrary
metric spaces (proofs are easy and are left to the reader).
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4.1. sup{ dimMS : S ∈ S } ≤ dimMS ≤ dimM

⋃
S.

Recalling 2.5 for definitions, dimM is increasing, stable, sublogarithmic, and logarithmic
on cartesian powers. It is also closure invariant:

4.2. dimM cl S = dimMS, where cl S := { clS : S ∈ S }.

4.3. If A ⊆ P(Xn), then dimA ≤ dimMA.

If Y is another metric space, then dimM is “Lipschitz nonexpansive”:

4.4. If (fS : S → Y )S∈S is uniformly Lipschitz, then dimM{ fS(S) : S ∈ S } ≤ dimMS.

Hence, dimM is also Lipschitz invariant:

4.5. If (fS : S → Y )S∈S is uniformly bi-Lipschitz, then dimM{ fS(S) : S ∈ S } = dimMS.

For X = Rn, we have a special property.

4.6. dimMA ≤ n for every A ⊆ P(Rn) such that sup{ diamA : A ∈ A } < +∞.

When combined with 4.1,

4.7. If E is bounded and some Ex has interior (x ∈ Rm), then dimM{Ex : x ∈ Rm } = n−m.
Hence,

4.8. Theorem B holds for d = n−m.

Next is a uniform version of 3.2.

4.9. Theorem B holds for d = 0.

Proof. Assume that R does not define N and E is DΣ and bounded. Let A = {x ∈ Rm :
dimEx = 0 }. We must show that dimM{Ex : x ∈ A } ≤ 0.

First, suppose that n = m + 1. By following the argument for 3.2, it suffices to exhibit
a linear T : R2 → R such that

dimM{T ((Ex)
2) : x ∈ A } ≥ 2dimM{Ex : x ∈ A }.

With Q as in the proof of 3.5, observe that { (x, t) : x ∈ Rm & t ∈ Q((Ex)
4) } is DΣ, and

for every x ∈ Rm, Ex has interior if and only if Q((Ex)
4) has interior. Hence, by 2.15, there

is a finite set I of intervals such that for every x ∈ A there exists Ix ∈ I such that Q((Ex)
4)

is disjoint from Ix. By arguing as in 3.5 there is a finite collection L of lines through the
origin and positive real numbers (c`)`∈L such that, for each x ∈ A, there exists `(x) ∈ L
such that the restriction to (Ex)

2 of the orthogonal projection π`(x) onto `(x) is bi-Lipshitz
with lower constant c`(x). For each such `, let A` be the set of x ∈ A such that π`�(Ex)2 is
bi-Lipschitz with lower constant c`. Let θ` be a rotation taking ` to the real line and put
T` = θ` ◦ π`. As the family (T`�((Ex)2))x∈A`

is uniformly bi-Lipschitz, we have

dimM{T`((Ex)2) : x ∈ A` } = dimM{ (Ex)
2 : x ∈ A` }.

By stability, for some ` ∈ L we have

dimM{ (Ex)
2 : x ∈ A } = dimM{ (Ex)

2 : x ∈ A` }.
Hence, for this `, we have

dimM{T`((Ex)2) : x ∈ A } ≥ dimM{ (Ex)
2 : x ∈ A }.
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As dimM is logarithmic on cartesian powers, we have

dimM{T`((Ex)2) : x ∈ A } ≥ 2dimM{Ex : x ∈ Rm }
as desired.

With the case n = m+ 1 in hand, the general case follows by the uniform version of the
last paragraph of the proof of 3.2. �

Hence,

4.10. Theorem B holds if either n−m = 1 or dim{Ex : x ∈ Rm } ≤ 0.

Again we have made it this far in axiomatic fashion, that is, via easily-stated properties
of dimM rather than its definition; this now changes. We shall finish the proof of Theorem B
by an induction, but we need to make the inductive assumptions rather more precise. We
require some notation and definitions (some of which are formulated specifically for this
induction).

Let Π(k, j) denote the collection of all coordinate projections Rk → Rj, and Π(k) =⋃
j Π(k, j). Given π ∈ Π(k, j) we let π⊥ ∈ Π(k, k − j) denote the orthogonal projection.

Observe that if π ∈ Π(n,m) is the projection on the first m coordinates and x ∈ Rm, then
Ex = π⊥(E ∩ π−1(x)).

Given a set A, its cardinality is denoted by cardA.
Put Bk(E) = { v ∈ Zn : (v+In)∩2kE 6= ∅ } and Nk(E) = cardBk(E). Note that Nk(E) is

the number (allowing +∞) of closed dyadic cubes in Rn of side length 2−k that intersect E,
and that if E ⊆ In, then Bk(E) ⊆ Nn. If S ⊆ P(Rn), then Bk(

⋃
S) =

⋃
S∈SBk(S). It is a

standard fact that dimME = limk→+∞ log2Nk(E)/k. Hence,

4.11. If S ⊆ P(Rn), then dimMS ≤ α iff

∀ε > 0∃kε ∈ N∀k ≥ kε∀S ∈ S, Nk(S) ≤ 2k(α+ε).

The next batch of definitions is for tracking certain data that we need to make our
induction go through.

For δ ∈ (0,∞), we say that C ⊆ Nn is δ-sparse if there exists π ∈ Π(n, n− 1) such that
card(π⊥(C ∩ π−1(u))) ≤ δ for all u ∈ Nn−1. (For n = 1, this means just that cardC ≤ δ.)
If π is the projection on the first n− 1 coordinates, then this means that card(Cu) ≤ δ for
all u ∈ Nn−1. An easy observation:

4.12. If C ⊆ Nn is δ-sparse, then there exists π ∈ Π(n, n−1) such that cardC ≤ δ cardπC.

We need a uniform version for collections of sets. We say that C ⊆ P(Nn) is δ-sparse if
there exists π ∈ Π(n, n− 1) such that for all u ∈ Nn−1 and all C ∈ C, we have card(π⊥(C ∩
π−1(u))) ≤ δ. The quantifier complexity of the next step is sufficiently complicated that
we express it in logical notation. We say that S ⊆ P(In) is sparse if:

∃s ∈ N∀ε > 0∃kε ∈ N∀k > kε∃(C1,S)S∈S . . . (Cs,S)S∈S∀S ∈ S, Bk(S) =
s⋃
i=1

Ci,S

where each family (Ci,S)S∈S ⊆ P(Nn) is 2kε-sparse. (We have suppressed any notation here
for the dependence of the families (C1,S)S∈S on k; we introduce it later as needed.) We say
that s witnesses (or is a witness to) that S is sparse, and that E is sparse if E ⊆ In and
{E} is sparse. Some easy observations (proofs are left to the reader):
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4.13. Let S ⊆ P(In).

(1) If dimMS = 0, then S is sparse and witnessed by s = 1.
(2) If S is sparse with witness s and S′ ⊆ P(In) is sparse with witness s′, then {S ∪S ′ :

(S, S ′) ∈ S× S′ } is sparse with witness s+ s′.
(3) If there exists π ∈ Π(n) such that πS := { πS : S ∈ S } is sparse, then S is sparse

with the same witness.
(4) If there exists π ∈ Π(n) such that dimMπS = 0, then S is sparse and witnessed by

s = 1.

4.14. If E is the union of an increasing sequence (Sr)r>0 of subsets of In and

{Sr,x : r > 0, x ∈ Im }
is sparse, then {Ex : x ∈ Im } is sparse with the same witness.

Proof. Let s ∈ N witness that {Sr,x : r > 0, x ∈ Im } is sparse. Let ε > 0. We exhibit kε
such that for all k > kε there are 2kε-sparse families (Dk,1,x)x∈Im , . . . , (Dk,s,x)x∈Im of subsets
of Nn−m such that Bk(Ex) =

⋃s
i=1Dk,i,x for every x ∈ Im. By assumption, there exists

kε ∈ N such that for all k > kε there are 2kε-sparse families

(Ck,1,r,x)(r,x)∈R>0×Im , . . . , (Ck,s,r,x)(r,x)∈R>0×Im

of subsets of Nn−m such that Bk(Sr,x) =
⋃s
i=1 Ck,i,r,x for every (r, x) ∈ R>0× Im. Let k > kε

and x ∈ Im. Since Ex ⊆ In−m, we have Bk(Ex) ⊆ {0, . . . , 2k}n−m. Since (Sr) is increasing
in r, so is (Sr,x). Thus, there exists r(k, x) > 0 such that Bk(Ex) = Bk(Sr(k,x),x). Hence,

Bk(Ex) =
s⋃
i=1

Ck,i,r(k,x),x.

Since each (Ck,i,r,x)(r,x) is 2kε-sparse, so is each (Ck,i,r(k,x),x)x∈Im . Put Dk,i,x = Ck,i,r(k,x),x.
Then (Dk,1,x)x∈Im , . . . , (Dk,s,x)x∈Im are as desired. �

Proof of Theorem B. Let E be DΣ and bounded. We must show that

dimM{Ex : x ∈ Rm & dimEx = d } ≤ d.

We have already established the cases n −m = 1, n −m = d, and d = 0. By translation,
dilation and Lipschitz invariance, we may take E ⊆ In. We now proceed by induction on
n−m ≥ 2 to establish the following:

(i)n,m {Ex : x ∈ Im & int(Ex) = ∅ } is sparse.

(ii)n,m dimM{Ex : x ∈ Im & dimEx = d } ≤ d, 1 ≤ d ≤ n−m− 1.

Remark. Formally, we could start the induction with n−m = 1, but the key ideas will be
better illustrated by doing the case n−m = 2 explicitly.

Proof of (i)m+2,m. Suppose that n = m + 2. Let A = {x ∈ Im : int(Ex) = ∅ }. We must
show that {Ex : x ∈ A } is sparse. Write E =

⋃
r>0Xr as in 2.11. By 4.14, it suffices to

show that the collection {Xr,x : r > 0, x ∈ A } is sparse. In order to improve readability,
we first suppress the parameters and show that (i)2,0 holds, that is, if E ⊆ I2 (∼= I × I) is
definable, compact and has no interior, then E is sparse. The argument will be explicit
enough to read off the needed uniformity in parameters.
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Define f : I2 → R by f(x, y) = min(Ex ∩ [y, 2]) (= min((E ∪ (I× {2})x)). For y ∈ I, let
f( , y) denote the function x→ f(x, y) : I→ R. Put

F = E ∪ { (x, y) ∈ I2 : x ∈ D(f( , y)) }.

For y ∈ R, put Ey = {x ∈ R : (x, y) ∈ E } and F y = {x ∈ R : (x, y) ∈ F }. For each k,
put

Ck,1 = Bk({ (x, y) ∈ I2 : int(Ex) 6= ∅ })
Ck,2 = Bk({ (x, y) ∈ I2 : int(Ey) 6= ∅ })

Ck,3 = { (u, v) ∈ Bk(E) : u ∈ Bk(F
v/2k) } \ Ck,2

Ck,4 = Bk(E) \ (Ck,1 ∪ Ck,2 ∪ Ck,3)

As Bk(E) is the union of the Ck,i, it suffices to let ε > 0 and show that, for each i ∈
{1, 2, 3, 4}, Ck,i is 2kε-sparse for all sufficiently large k.

We first dispose of the Ck,1 and Ck,2. As E is Fσ and has no interior, the same is true

of {x ∈ I : int(Ex) 6= ∅ }; as this set is DΣ (2.12) and contained in R, it has dimM at most
0 by 4.10. Thus, for sufficiently large k, the projection of Ck,1 on the first coordinate has
cardinality at most 2kε; for such k, the set Ck,1 is 2kε-sparse (by definition). The Ck,2 are
similarly handled via projection on the second coordinate.

Now we deal with the Ck,3. By compactness of E ∪ (I × {2}), each f( , y) is lower
semicontinuous. It is routine real analysis that for each η > 0 the set

E ∪ { (x, y) ∈ I2 : x ∈ D(f( , y), η) }

is compact—and so F is DΣ (recall the argument for 2.14)—and for each y ∈ I, F y has
interior if and only if Ey has interior. If y ∈ I and Ey has no interior, then F y \ int(Fy) =

Ey ∪ D(f( , y)), and so dimM{F y : y ∈ I & int(Ey) = ∅ } = 0 by applying 4.10 to
{ (y, x) : (x, y) ∈ F }. By 4.13, {F y : y ∈ I & int(Ey) = ∅ } is sparse (with witness 1).
Hence, Ck,3 is 2kε-sparse for all sufficiently large k, because card{u ∈ N : (u, v) ∈ Ck,3 } ≤
cardNk(F

v/2k) for each v ∈ N.
Finally, we deal with the Ck,4. By 4.9, we have dimM{Ex : int(Ex) = ∅ } = 0. Hence, for

all x ∈ I and sufficiently large k, if Ex has no interior, then Nk(Ex) ≤ 2kε; we show that
Ck,4 is 2kε-sparse for such k by letting (u, v) ∈ Ck,4 and showing that (Ck,4)u ⊆ Bk(Eu/2k).
As Ck,4 is disjoint from Ck,3, the function

x 7→ f(x, v/2k) : [u/2k, (u+ 1)/2k]→ R

is continuous. Moreover, its range is contained in [v/2k, (v + 1)/2k], for if not, then u ∈
Bk(E

(v+1)/2k) by the Intermediate Value Theorem, contradicting the definition of Ck,4.
Hence, v ∈ Bk(Eu/2k) (as desired).

We have finished the proof of the case m = 0 and n = 2. For arbitrary m, recall the
compact sets Xr,x at the beginning of the proof. Put f(r, x, a, b) = min(Xr,x,a ∩ [b, 2]) for
(a, b) ∈ I2. Make the obvious modifications to the definitions of the Ci,k, and then proceed
mutatis mutandis. (This ends the proof of (i)m+2,m.)

Proof of (ii)m+2,m. Suppose that n = m + 2. Put A(1) = {x ∈ Rm : dimEx = 1 }. We

must show that dimM{Ex : x ∈ A(1) } ≤ 1. Suppose to the contrary that there exist ε > 0
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and a sequence (xk) in A(1) such that

(1) ∀k, Nk(Exk) > 2k(1+ε).

For each π ∈ Π(2, 1), we have dimM{ π(Ex) : x ∈ Rm } ≤ 1. Hence, after throwing away
finitely many xk, we reduce to the case that also

(2) ∀k∀π ∈ Π(2, 1), Nk(π(Exk)) < 2k(1+ε/3).

By (i)m+2,m, {Ex : x ∈ A(1) } is sparse. Thus, there exist s, j ∈ N such that Bj(Exj) is a

union of s-many 2jε/2-sparse sets and 2j(1+ε/2) ≥ s2j(1+ε/3). By 4.12 and (1), there exists
π ∈ Π(2, 1) such that Nj(π(Exj)) ≥ Nj(Exj)/s2

jε/2 > 2j(1+ε/3), contradicting (2). (This
ends the proof of (ii)m+2,m.)

Inductive assumption. Let n−m > 2. Assume that (i)n′,m′ and (ii)n′,m′ hold for all n′,m′ ∈
N such that 0 ≤ n′ −m′ < n−m.

Proof of (i)n,m. This is quite similar to the proof of (i)m+2,m, so we only hint at the needed
modifications. As before, we reduce to the case that m = 0, that is, we show that if E is
compact and has no interior, then E is sparse (and explicitly so). Define f as before, but
with x ranging over In−1, and define the associated set F in the obvious way. Let π denote
projection on the first n−1 coordinates. Consider the following sets and collections, where
Ey and F y are defined similarly as before:

(1) { (x, y) ∈ E : x /∈ intπE }
(2) { (x, y) ∈ E : x ∈ intπE & int(Ex) 6= ∅ }
(3) { (x, y) ∈ E : int(Ey) 6= ∅ }
(4) {Ex : x ∈ In−1 & int(Ex) = ∅ }
(5) {F y : y ∈ I & int(Ey) = ∅ }

Since πE \ intπE is DΣ and has no interior, it is sparse by (i)n−1,0; then set (1) is also
sparse, because

π{ (x, y) ∈ E : x /∈ intπE } = πE \ intπE.

Similarly, sets (2) and (3) are sparse because the sets

{x ∈ intπE : int(Ex) 6= ∅ } { y ∈ I : int(Ey) 6= ∅ }
are DΣ and have no interior. By (i)n,n−1, collection (4) is sparse. By (i)n,1 (applied to
{ (y, x) : (x, y) ∈ F }), collection (5) is sparse. Now proceed mutatis mutandis as for (i)2,0.

Proof of (ii)n,m. Let d ∈ {1, . . . , n − m − 1} and A(d) = {x ∈ Rm : dimEx = d }. We

must show that dimM{Ex : x ∈ A(d) } ≤ d. If d = n − m − 1, then the argument is
essentially the same as for (ii)m+2,m. If d < n −m − 1, then we apply (ii)n−1,m to πE for
each π ∈ Π(n−m,n−m− 1), then finish as for (ii)m+2,m via the obvious modifications.

This ends the proof of Theorem B. �

Proof of Theorem A. Let E be DΣ. We must show that indE = dimE = DimE.
By 2.15, it suffices to show that DimE = dimE. For (x, t) ∈ Rn × R, put

φ(x, t) = (x1(1 + x2
1)−1/2, . . . , xn(1 + x2

n)−1/2, t(1 + t2)−1/2).

The set
F := { (φ(x, t), (y − x)/t) : t > 0; x, y ∈ E; |x− y| ≤ t }
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is DΣ and bounded. For each (x, t) ∈ E × R>0, we have Fφ(x,t) = [−1, 1]n ∩ (E − {x})/t.
Thus, dimFφ(x,t) = dimE, so by Theorem B,

dimE = dimM{ [−1, 1]n ∩ (E − {x})/t : (x, t) ∈ E × R>0 }.

By translation invariance,

dimE = dimM{ (E ∩ B̄(x, t))/t : (x, t) ∈ E × R>0 }

where B̄(x, t) is the closed cube of side length 2t centered at x. Let ε > 0. We show that
DimE ≤ ε + dimE. There exists ρ > 0 such that for all x ∈ E, t > 0 and 0 < s < ρ,
we have nets(E ∩ B̄(x, t))/t) ≤ s−(ε+dimE). Put C = max(1, netρ B̄(0, 1)). Let x ∈ E and
0 < r < R. If r/R < ρ, then

netr(E ∩ B̄(x,R)) = netr/R((E ∩ B̄(x,R))/R) ≤ (R/r)ε+dimE ≤ C(R/r)ε+dimE.

If r/R ≥ ρ, then

netr(E ∩ B̄(x,R)) ≤ netρR(E ∩ B̄(x,R))

≤ netρR B̄(x,R) = netρ B̄(0, 1) ≤ C(R/r)ε+dimE.

Hence, DimE ≤ ε+ dimE, as desired. �

5. Concluding remarks

We have already noted in the introduction that Theorem A applies beyond the easy case
that R◦ is o-minimal. Here is another class of examples not yet described in the literature.

5.1. There is a Cantor set E ⊆ R such that, if R is o-minimal and exponentially bounded,
then ind = Dim = dim on all sets definable in the expansion of R by all subsets of Em (m
ranging over N) that have countable closure.

(See any of [8, 15, 26] for the definition of “exponentially bounded”. Note that every
Cantor subset of R contains countable closed sets of arbitrary countable Cantor-Bendixson
rank.)

Proof. Let E be as in the proof of [15, Theorem B]. By 1.8, it suffices to let X ⊆ E be
countable and closed, and show that every bounded unary set definable in (R, X)# has
interior or is countable, where (R, X)# denotes the expansion of R by all subsets of each
finite cartesian power of X. By [15, 1.11], it suffices to let f : [0, 1]n → R be bounded and
definable in R, and show that f(Xn) has countable closure. By compactness of Xn, it
suffices to let x ∈ Xn and find δ > 0 such that f(Xn ∩B(x, δ)) has countable closure. The
result now follows from [15, 1.8], assertion (ii) in the proof of [15, Theorem B], and the
countability and compactness of Xn. �

5.2. Consideration of { k! : k ∈ N } shows that the dimensional coincidence ind = dim =
Dim can hold for sets that define N over R.

5.3. In 1.7, “Fσ” cannot be relaxed to “boolean combination of Fσ”: By [7, Theorem 1],
if E is Fσ and a real-closed proper subfield of R (say, if E is the set of all real algebraic
numbers), then every set definable in (R, E) is a boolean combination of Fσ sets. But both
E and R \ E are dense in R.
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5.4. The conclusion of Theorem A does not generally extend to definable metric spaces
(that is, metric spaces of the form (E, d) where d : E2 → R≥0 is definable). For example,

(x, y) 7→ |x− y|2/3 is a metric on I, and it is easy to see that dimH I = 3/2 with respect to
this metric.

Open issues and further directions. While we regard Theorem A as a major advance
in the tameness program over R, there are several questions left open. Perhaps the most
important of these: If R does not define N, does ind = Dim = dim on all sets definable in
the open core of R? To put this another way, if R is an expansion of R by constructible
sets and it does not define N, does ind = Dim = dim on all definable sets? By 1.5, this
is the same as asking whether ind = indcl on all definable sets, but we do not yet know if
dim = dimcl on all definable sets (a weaker condition, on the face of it). Indeed, we do not
yet know what to say about the dimensions of complements of DΣ sets (but we are working
on it).

Are there notions of dimension that satisfy all of the properties listed in 1.2 (at least, on
compact sets) but are not bounded above by Dim?

What can be said about R under the assumption ind ≤ dim on all definable sets? As
mentioned earlier, there are Gδ sets in R3 with ind > dim ([9, 1.10.23]), so N is not definable
(and thus Theorem A applies). But beyond this?

There is a notion dual to Dim in the literature; see Fraser [14] for information. We have
not considered it here as it allows for nonempty open subsets of R to have dimension zero
(and it is decreasing, not increasing) but perhaps there are still some associated tameness
results.

We have omitted from this paper consideration of applications of Theorems A and B
beyond those to the tameness program given in the introduction, in particular, we forego
describing in detail obvious strengthenings of already-known results (see [26] for a few).
But there are plenty of open questions to be pursued. Just one example: Suppose that E
is closed and definable and p ∈ N. Is there a definable Cp function f : Rn → R such that
E = f−1(0)? If R defines N, then yes, by a theorem of H. Whitney (indeed, f can then
be taken to be C∞ and real-analytic off E). If R is o-minimal, then again, yes ([8, 4.22]).
But in general? What if moreover dim = dimcl on all definable sets? Or if ind = indcl on
all definable sets? (And so on.)

One could investigate expansions of the ordered additive group (structures on R such
that { (x, y) ∈ R2 : x < y } ∈ S2 and graph(+) ∈ S3) in a spirit similar to what we have
done in this paper, but the results would necessarily be rather different. To illustrate, it
is known (see the end of the introduction to [20]) that if C is the classical “middle-thirds”
Cantor set, then the theory of (R, <,+, C) is decidable (hence at least “logically tame”)
but dimHC = (log 2)/(log 3) > 0 = indC. Moreover, if E is the set of midpoints of the
complementary intervals of C, then E is constructible, definable and dimME = dimM clE =
dimM(E ∪ C) ≥ dimHC. But as E is countable, dimH E = 0. By 2.4, there are compact
definable subsets of the plane for which ind < dim. It does seem reasonable to think that
perhaps we still have dimH = dimP on all definable sets. (The upper packing dimension,
dimP, of a metric space X can be defined by dimPX = infS supS∈S dimMS where S ranges

over all countable covers of X. The condition dimH = dimP is regarded as desirable by
fractal geometers.)
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