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Some Concrete Aspects of Hilbert’s 17th Problem
Bruce Reznick
This paper is dedicated to the memory of Raphael M. Robinson and Olga Taussky- Todd.

ABSTRACT. Hilbert’s 17th Problem asks whether a real positive semidefinite
polynomial can be expressed as a sum of squares of rational functions. Artin
answered “yes” in the 1920’s, without giving any way of finding such an expres-
sion. This paper attempts a historical survey of the literature on the following
two questions: What can be said about a psd Polynomial that is not a sum of
squares of polynomials? How can one write a given psd polynomial as a sum
of squares of rational functions? We are particularly interested in answering
these questions as concretely as possible.

1. Introduction

Hilbert’s 17th Problem asks whether a real positive semidefinite (psd) poly-
nomial in several variables must be a sum of squares of rational functions. This
paper gives a survey of the literature on two closely related questions: What can
be said about a psd polynomial that is not a sum of squares of polynomials? How
can one write a given psd polynomial as a sum of squares of rational functions?
These questions go back to Hilbert himself, and his interest in them predated the
1900 Paris Congress.

This paper began as a presentation to the Séminaire Delon-Dickmann-Gondard
at the Université Paris VII in January 1995. I gave a summary of the history of
the answers to the first question above, and a detailed exposition of my recent
contribution towards understanding the second question above for positive definite
forms. The paper on which I based the second part has appeared in print [72], and
has also been discussed in a recent Monthly article [64]. For these reasons, this
paper mainly addresses the first question. An earlier, unrefereed, version of this
manuscript appeared [73] in the Séminaire’s annual preprint collection.

Sadly, two mathematicians influential to the development of this subject have
passed away recently: Raphael M. Robinson (1911-1995) and Olga Taussky-Todd
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(1906-1995). The reader will see below the vital contributions made by Professors
Robinson and Taussky.

I thank Danielle Gondard for the opportunity to speak (in English!) to her
seminar and providing the impetus for this paper. I also thank many patient audi-
ences for their insights, tolerance and good humor during my various presentations.
I thank Chip Delzell and Jim Madden for editing these RAGOS Proceedings, and
am especially grateful to the referee for a careful and sensitive reading of the man-
uscript, which has led to many corrections and improvements in the exposition.
Finally, I thank Man-Duen Choi, Chip Delzell, Tsit-Yuen Lam, David Leep, Lou
van den Dries and Beate Zimmer for their assistance in preparing this paper.

2. Notations

Let Hy(K™) denote the set of homogeneous forms of degree d in n variables
(“n-ary d-ics”) with coefficients from the field K. By identifying p € H4(K™) with
the N = ("1971)-tuple of its coefficients, we see that Hy(K™) ~ KN. Suppose
™ is an even integer. A form p € H,,,(R") is called positive semidefinite or psd if
P(T1,...,Tn) > 0 for all (zy,...,2,) € R". Following [14], we denote the set of psd
forms in H,,(R™) by P, ;.. Since P, ;. is closed under addition and closed under
multiplication by positive scalars, it is a convex cone. In fact, FP,m is a closed
convex cone: if p, — p coefficientwise, and each p, is psd, then so is p. A psd form
is called positive definite or pd if p(z,,...,,) = 0 implies zj=0forl1<j<n It
is not difficult to see that the pd forms constitute the interior of the cone Iy

A form p € Hy,(R™) is called a sum of squares or sos if it can be written
as a sum of squares of polynomials. It is easy to show that if p € H,, (R™) and
P = Y, hi with by € R[zy,...,z,], then each h; € Hp,/2(R™). Again following
[14], we denote the set of sos forms in Hy, (R™) by £y, . It is easy to see that Py
is a convex cone; less obvious is the fact that it is closed. This was first proved
by R. M. Robinson [77]. Finally, we note the inclusion Znam C P, and define
Apm = Pam \ Znm. p€ Ay, then p may be construed as lying in A, for
m 2 n; for even my > m, it is easy to show that 2" ~™p Mo

By setting z, = 1, any p € Hy(K™) can be dehomogenized into a polynomial
over K in n— 1 variables, of degree < d. And any polynomial flz1,...,2,) over K
of degree d can be homogenized into a form p € H.(K™+!) with e > d, by adding
a new variable y, and defining

p(zl;---’znay) = yef(zl/y’--wxn/y)-

The properties of being psd and sos are inherited under dehomogenization, and
conversely, are preserved when a polynomial is homogenized into a form of even
degree. However, the property of being positive definite is not preserved upon
homogenization. For example, f(z,y) = 22 + (1 — zy)? takes only positive values
for real (z,y), but its homogenized form p(z, y, z) = z222+ (22 —zy)? has noa-trivial
zeros at (1,0,0) and (0,1,0), corresponding to f's “zeros at infinity”.

Many examples presented in this paper as forms originally appeared in the
literature as non-homogeneous polynomials. When we have made such a change, it
will be noted explicitly.
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3. Hilbert’s 17th Problem

“It is a truth universally acknowledged, that a mathematical object
that is nonnegative in all orderings must be in want of a represen-
tation as a sum of squares.” — after Jane Austen

a. Before 1900. It was well-known by the late 19th century that Fpn=%m
when m = 2 or n = 2. This is easy for m = 2: any psd n-ary quadratic form p can
be diagonalized as sum of rank(p) < n squares of linear forms. If p(z,y) € P, ,,,
then f(¢) = p(t,1) > O for all real ¢, so the roots of f are either real (with even
multiplicity) or appear in complex conjugate pairs, and the leading coefficient of i
is positive. Thus, we have the factorization

f&) =[] -t;)% Tt = (e +iB)) f[ (t — (ar — iBx))
k=1

Jj=1 k=1
= P(t)*(Q(t) +iR(t)) (Q(t) — iR®)) = (P(1)Q(t))* + (P®)R(E))>.

It follows (upon homogenizing f) that p is also a sum of two polynomial squares.
Suppose in the foregoing that the 2s complex roots of f are distinct. Then there
are 2°~1 ways to allocate the pairs of conjugate linear factors into an unordered
pair {Q + iR, Q — iR} of complex conjugate polynomials. Since Q + iR is always
monic, deg@ > deg R. We obtain in this way 2°~! different (cf. [19, p. 109])
representations f = g2 + h? in which degh < 1 deg f. For example, with s = 3,

2 2
P+1=(")+ 217 = (-2 + (22 -1)? = (- e+ L)’ 4 (25 Le- L)%

In 1888, the 26-year old David Hilbert proved two remarkable results in one
paper, [38]. First, he showed that £3 4 = P; 4; in fact, he showed that everyp € P34
can be written as the sum of three squares of quadratic forms. (For an elementary
proof, with “three” replaced by “five”, see [15]; modern expositions of Hilbert’s
proof have been given by Cassels (in [67, pp. 89-93]) and Swan [82].) Hilbert’s
second result is that the preceding are the only cases for which A, m = 0. That is, if
'n23andm260rn24a.ndm24,thenthereexistformsp€Pn,m that are not
so8. These can be derived as noted above from forms in A3 and Ay 4. Hilbert’s
proofs used the techniques of 19th century algebraic geometry. Since we shall
later describe shorter and simpler examples, we present only a sketch of Hilbert’s
construction of p € Agg. The final step in the proof is a critical observation that
embodies one of the essential principles of real algebra: if p = S hZ and p(u) =0
for some u € R”, then 0 =}, hZ(u), hence hy(u) = 0 for all k.

This is Hilbert’s method to construct a sextic polynomial F(z,y) > 0 that
is not a sum of squares of polynomials. Let ¢(z,y) and %(z,y) be two real cu-
bic polynomials with no non-constant common factor, and with common zeros at
{P1,..., P} C R2. (By Bezout’s Theorem, nine is the maximum number of com-
mon zeros of two cubics, even in C2.) It is (or used to be) well-known that any
cubic h(z,y) that vanishes at eight of the P;’s must vanish at the ninth. Choose
a quadratic polynomial f(z,y) # O that vanishes at P,, P,, P;, P, and P;, and a
quartic polynomial g(z,y) # 0 that vanishes at P, P, P3, P; and P; and is sin-
gular at Ps, P; and Ps. (Such curves exist by constant-counting arguments: there
are 5 conditions on f and (3) = 6 coefficients in a quadratic, and 5 + 3 - 3 = 14
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conditions on g and (26) = 15 coefficients in a quartic.) It can then be shown that
there exists A so that

F(z,y) := ¢*(z,9) + ¥2(z,9) + A f(z,y)g(z,y) > 0

for all real (z,y), and that F(P;) =0for 1 < j < 8, but F(P) > 0. If F = SR AL
then each h; is a cubic and hi(P;) =0 for 1 < j < 8, hence hi(Py) = 0 for all k,
contradicting 3, hZ(P) = F(Py) > 0.

The most complete modern exposition of this method seems to be in Gel'fand-
Vilenkin [29, pp. 232-235], which also established the connection between forms in
Apm and the Hamburger moment problem in n — 1 variables. For more on this
connection, see [71] and the references contained within. Robinson [77] made a
judicious choice of ¢ and 1 that greatly simplified Hilbert’s methods (see §4b), and
cited an unpublished example of Ellison using the original construction. Ellison
also generalized a key step of Hilbert’s construction in [28, p. 668].

The earliest published reference to [38] seems to be [46], by Hilbert’s close
friend Adolf Hurwitz. Hurwitz proves the arithmetic-geometric inequality by show-
ing that for even m, the form '+ TR —mx; - - - Ty, is & sum of squares of forms.
He remarks in a footnote (p. 507): “Die Méglichkeit einer solchen Darstellung ist
freilich nicht von vornherein klar. Es giebt ndmlich, wie Herr Hilbert gezeigt hat,
positive Formen, welche nicht als Summen von Formenquadraten darstellbar sind.”
The Hurwitz construction, which can also be found in [88, p. 55], is simplified
somewhat in [69).

In 1893, Hilbert [39)] generalized his earlier result on P; 4; his proof seems to be
non-constructive, and lacks a modern exposition. Suppose p € P;,, with m > 6.
Then there exist py € P34 and hyi € Hyn—2(R3) so that pp; = k%, + k3, + hi,.
If m = 6 or 8, then p, is already known to be the sum of three squares of forms,
and hence (as Landau later noted [51]), the four-square identity implies that pp? =
(pp1)p1 is the sum of four squares of forms. If m 2 10, then the argument can
be applied to py, so that there exists p; € Psm_g with mp2 = h3, + hZ, + h3,.
Thus, if m = 10 or 12, then p(p1p2)? = (pp1)(p1p2)p2 is the sum of four squares of
forms, etc. An easy induction allows us to conclude that there exists g € P;; with

t= [gﬂ;—"’ﬁj so that pg? is the sum of four squares of forms. It follows that p is
the sum of four squares of rational functions with psd denominator q.

b. Hilbert’s “Hilbert’s 17th Problem”. In his 1900 Address to the Inter-
national Congress of Mathematicians in Paris [41], Hilbert posed a generalization
of his results as the 17th Problem: Must every psd form p be a sum of squares of
rational functions? We quote from the contemporary English translation [6, p. 24]
of Hilbert’s paper:

“A rational integral function or form in any number of variables with
real coefficients such that it becomes negative for no real values of these
variables, is said to be definite. The system of all definite forms is in-
variant with respect to the operations of addition and multiplication, but
the quotient of two definite forms—in case it should be an integral func-
tion of the variables—is also a definite form. The square of any fornr is
evidently always a definite form. But since, as I have shown ([38]), not
every definite form can be compounded by addition from squares of forms,
the question arises—which I have answered affirmatively for ternary forms
([89])—whether every definite form may not be expressed as a quotient
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of sums of squares of forms. At the same time it is desirable, for certain
questions as to the possibility of certain geometrical constructions, to know
whether the coefficients of the forms to be used in the expression may al-
ways be taken from the realm of rationality given by the coeflicients of the
form represented ([40, §38]).”

A more precise modern formulation is as follows: suppose p € Py, y, N Hp (K™),
where K C R. Is it true that there exist positive A\ € K and h; € K(z1,...,2Z,) so
thatp=3", Axh2? Upon clearing denominators, we get an equivalent formulation:
do there exist positive Ax € K, ¢ € H.(K™) (for some r) and gx € H,;/2,.(K™) s0
that pg® = 3", Meg2?

The permission to use positive weights A; from K is not explicitly mentioned
by Hilbert, and might seem peculiar to those unfamiliar with real algebra, but it
is essential. For example, let K = Q(v/2), (n,m) = (1,0) and p(z) = v/2, which
is trivially psd. If we could write p(z) = ), hi(z), with hx € K][z], then each
hi would be a constant. Thus, hy = ai + FV?2, with ax,fx € Q, so V2 =
> k(ex + Brv2)%. This implies —v2 = 3, (ak — Bxv2)?, a contradiction to the
order in R. Initiates will recognize that v/2 is negative in one ordering of K, and
80 is not a sum of squares in K.

Lam [49, pp. 16-18] discusses three aspects of Hilbert’s work that might have
motivated a study of formally real fields and ordered fields: the 17th Problem,
some foundational questions in geometry [40] and the study of totally positive
elements in number fields. Modern discussions of the geometric roots of Hilbert’s
17th Problem have been made by Prestel [66] and Delzell [23]. The Hilbert-Landau-
Siegel Theorem states that if z is an element in a number field F' that is positive
in each embedding of F into R, then z is the sum of four squares. Elements that
are not totally positive, such as v/2 above, are negative in at least one embedding
into R, and so cannot be sums of squares at all.

c. After 1920. In 1927, Emil Artin [1] used the Artin-Schreier theory of
real closed fields to answer Hilbert’s 17th Problem in the affirmative, under the
additional hypothesis that the field K has a unique order. (This hypothesis is
satisfied by R.) He also extended his solution to all subfields K of R, provided
we weaken the conclusion slightly, by allowing nonnegative weights Ay € K, as
mentioned in (b) above. However, Artin’s proof gives no information about any
specific representation of a particular form p € P, ,, as a sum of squares of rational
functions.

Among the many generalizations of the 17th Problem, we mention one in detail.
In 1981, Becker [2, 3] gave necessary and sufficient conditions for a rational function
p over a formally real field to be a sum of 2k-th powers of rational functions. For
such functions over R, the criterion is, roughly speaking, that p must be psd, its
degree must be a multiple of 2k and all real zeros must have “2k-th order”. A
concrete application of this theorem [3, p. 144] is that for all k£ > 1, there exist
positive Ajx € Q and fji, g;r in Q[t] so that

2 y 2k
B(t) = ;—1%2' = ZAJI: (f]k(t)) . .
2

9ik(t)

As with Artin’s result, one does not obtain an explicit representation of B(t) as a
sum of 2k-th powers of rational functions. These are not hard to find for small k,
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and there was some interest in finding them for all k. Powers has recently written
an excellent paper [64] on the history of this, the “Champagne Problem”.

We shall give an expression for B(t) as a sum of 2k-th powers (as above) at the
end of §7; however the coefficients and polynomials have real coefficients, rather
than the rational ones requested by Becker. One can deduce from recent work of
Becker-Powers [4] that there is a representation of B(t) as a sum of 2k-th powers
in which each gji is positive definite. Schmid has also recently shown [79] that
if f and g are positive definite polynomials in one variable with the same degree,
then (f/g)(t) can be written as above, but where fix and g are positive definite
polynomials of the same degree.

Complete proofs of Hilbert’s 17th Problem can be readily found in the liter-
ature, e.g., [5, 47, 49, 50]. Ribenboim [74] and Pfister [61] wrote surveys on
Hilbert’s 17th Problem in the 1970s; two more recent surveys are by Gondard [30]
and Scheiderer [78]. The deep connections of Hilbert’s 17th Problem with logic
were initiated by A. Robinson [75, 76] in the mid-1950’s; Delzell has written [25]
a recent detailed history of logicians’ interest in Hilbert’s 17th Problem.

The spectacular development of real algebra and real algebraic geometry is well-
known (see, e.g., [5]) and will not be further discussed here. Rajwade [67] contains
detailed expositions of much of the material discussed and alluded to here. Lam has
written two wonderful expository articles on real algebra: [49, 50]. In 1982, he was
awarded the Steele Prize by the AMS, in part for [49] ([50] had not yet appeared).
Taussky wrote two survey articles ([83, 84]) on sums of squares in algebra. The first
one was particularly influential in calling attention to the ubiquitous role of sums of
squares in algebra, and was awarded the Ford Prize by the MAA in 1971. Olga was
always supportive and encouraging to all of us interested in sums of squares, and,
as a direct link to Hilbert, embodied the intellectual continuity of mathematics.

4. Examples from the 1960s and 1970s

For reasons that may be more psychological than mathematical, it took nearly
80 years for explicit forms in Apm to appear in the literature, and when they
appeared, they were much simpler than Hilbert’s original examples. Interestingly,
different authors constructed substantially different examples,

a. Examples of Motzkin. The way the first one arose is described in the
introduction to Theodore S. Motzkin's collected works [57, pp. xvi—xvii]: “During
many of his years at UCLA, Motzkin conducted seminars that were very exciting
to the students and faculty members who participated in them. Some of Motzkin’s
most beautiful and important work made its first appearance here. ... [D]uring
a seminar on inequalities, a colleague presented Artin’s solution of Hilbert’s 17th
[PJroblem, ... Motzkin wondered out loud what would happen if the classical in-
equalities of the type f(z,,...,z,) > 0 (such as the arithmetic-geometric inequality,
when suitably formulated) were proved by expressing f in the form f = Y"7" | p2,
and in particular if the p; would turn out to be polynomials. At the next meeting
of the seminar he carried out this program and presented for the first time the
now celebrated Motzkin polynomial ... Although some results of the semimar were
published in the proceedings of a symposium at Dayton, Ohio [68], the polynomial
was still not as widely known as it became after O. Taussky-Todd mentioned its
existence to A. Pfister who, along with J. W. S. Cassels and W. J. Ellison, did
further work in this area [see [8]].”

A e e e Emee o — m———
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Motzkin proved [56, p. 217 that for n > 3,
(tf +.-- 4+ tf,_l - nuz)tf . -t?,_l +u? e Apop.

The form in the special case n = 3 was denoted S’ in [15] and M in [68]. We give
the proof for n = 3; the general case is similar. Rename variables, and let

M(z,y,2) = (2% + 1 — 32%)ay? + 28 = 2%y + 2% + 26 — 32222,
The fact that M is psd follows from the arithmetic-geometric inequality atbic >
(abc)'/3, applied to (a,b,c) = (zy?,2%y*, 28). If M were sos, then the equation

M(z,y,z) = 3, hi(z,y,z) would hold for suitable h; € H3(R3). Write out M as
a ternary sextic, using all potential monomials:

0z® + 0% + 1z%y? +02%° + 1z2y* + 0zxy® + 0y°
+ 0z%z + 0z%yz + Oxsyzz +0z%3z + 0zy?z + 052z
+ 0z*2? + 0z3y22 — 3z%y%2% + 0zy322 + 0y*2?
+ 02323 +0z%y2® + 02323 + 0y323
+ 0z22* + Ozy2? + 0y2z*
+ 0z2® + 0y2®
+ 125,
Now write out hi(z,y, z), utilizing the same geometric scheme:

Az® + Bia®y + Cray® + Diy®
+ Exz?z + Fiayz + Gry?z
+ sz22 + Ikyz2
+ sza.

Since the coefficient of 2% in M is 0, the corresponding coefficient in Y. k2,
3.k AZ, also equals 0. Thus, A = O for all k. This can also be seen directly:
M(1,0,0) = 0 and hi(1,0,0) = Ax. Now look at the coefficient of 422 in D
it is 37, (B} + 2AxH;). Since Ay = 0 and the coefficient of %22 in M is 0, it
follows that Ej = 0 for all k as well. Continuing down the zz edge, we compare
the coefficients of 222* in 37, h7 and M: Y, 2EJi + HZ = 0. Since By = 0, it
follows that Hy = 0. (These also follow from M vanishing to 5th order at (1,0,0)
in the direction of (0,0,1).) A similar argument, applied to the coefficients of 5,
y*2? and y?2*, shows that Dy = Gy = I = 0.

At this point there are two paths to our conclusion. We have already reduced
our task to drawing a contradiction from the equation

ziy? + 234 + 20 — 3z%y%2% = Z(Bk:czy + Cixzy? + Frzyz + Ji23)2,
k

Since M(1,+1,+1) = 0, we have hi(1,21,%1) = 0, hence
Bi+Cy+ Fet+Ji = Bx+Cr—Fy—Jix = =B+ Ci—Fr+Ji = —By+Cr+Fy—Jj = 0.

Thus, By = Ck = Fy = J; =0, so hi(z,y,z) =0, contradicting )" hZ = M.

It is more telling to consider the coefficient of z2y222 in M and S hi; the
contradiction is immediate from —3 = 3", F2. This second argument is more
powerful. Let N(z,y,z) = M(z,y,2) + 2%y?22. Then N is evidently psd. If
N =Y, hZ, then, as before, it is easy to show that each h; can only use the same
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monomials as hx. However, the zeros of N are just (1,0,0), (0,1,0) and (0,0, 1),
and these imply only that Ay = Dy = J; = 0, information we already know. On
the other hand, a consideration of the coefficient of 22§22 in N and 3, h2 gives
the contradiction: —2 =", FZ.

By Hilbert’s 1893 Theorem, M must be the sum of 23! = 4 squares of rational
functions. Such an explicit representation follows from the identity

(2* +9%)*M (3,3, 2) = 2*9P(2® +9° + 2)(a® +y* - 227)% + (22 — y?)%°.

Hilbert’s Theorem was generalized (using entirely different methods) in a celebrated
1967 paper of Pfister [60] (see also [67, §5]): every p € P, ,, is the sum of at most
2"~! squares of rational functions. In 1971, Cassels-Ellison-Pfister [8] proved that
M cannot be written as the sum of three squares of rational functions. Their
methods were extended to a family of ternary sextics by Christie [21] in 1976. We
proved in 1980 [20] that every form that is the sum of two squares of rational
functions is in fact the sum of two squares of forms, and asked whether this is true
for sums of three squares (p. 254). Very recently, Leep-Starr [53] showed that the
answer to this question is “no”. Let

F(z,y,2) = z%® + 2%y + 25 + 827222,
G(z,y,2z) = 3z'y? — 22%® + 1z%y* + 403y%2 + 223,
+10z2y%2% + 2zy%23 — 8z%y2% + dzyz* + 825,

Then F and G are each the sums of three squares of rational functions, but F is
not a sum of three squares of forms and G is not even sos.

b. Examples of Robinson. In the late 1960s at Berkeley, Raphael M. Robin-
son (77, p. 264] saw “an unpublished example of a ternary sextic worked out recently
by W. J. Ellison using Hilbert’s method [see §3a). It is, as would be expected, very
complicated. After seeing this, I discovered that an astonishing simplification would
be possible by dropping some unnecessary assumptions made by Hilbert.” He adds
in a footnote: “When I submitted this paper for publication, I did not think that
any such example had ever appeared in print. However, shortly thereafter, T. S.
Motzkin called my attention to the fact that he had published a counterexample
for the case of ternary sextics in 1967. I have added an Appendix which discusses
Motzkin's result.”

Robinson chose specific cubics for Hilbert’s construction: ¢(z, y) =z% —z and
¥(z,y) = y® — y. The nine common zeros of ¢ and 9, {P;}, are the square array
{-1,0,1}?, and f and g are also not hard to find. Where Hilbert had argued that
some A makes ¢? + 42 + Afg psd, Robinson was able to choose a specific value for
A, and derived the psd form

R(z,y,2) = 2% + 3 + 26 — (2%y? + 2%9* + 222 + 222 + y%2% + y22%) + 327222,
(Robinson primarily discussed R(z, v, 1); the notation R was introduced in (14].)
Robinson proved that R is psd by writing (z%+y2)R(z,y,1) as a sum of squares
of polynomials. The inequality R > 0 had actually appeared in Motzkin (56, §3.4],
and is a special case of an inequality due to Schur (for a proof, see (35, p. 64]):

u(u—v)(u—w)+v"(v-u)(v—w)+w(w-u)(w-v)>0 if r,u,v,w > 0.
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(Take 7 = 1 and (u,v,w) = (2?,3?,2%) to obtain R.) For much more on Schur’s
inequalities and related sextic forms, see [18].
It is easy to see that R = 0 on the set

Z:={(1,%1,£1),(1,%1,0),(1,0,%1), (0,1, +1)}.

fR=3%, h%, where each hy, is a ternary cubic, then Ay vanishes on Z. This imposes

ten linearly independent equations on the ten coefficients of hy, that together imply

that hy = 0. As before, this contradicts R = 2 h,zc. We shall make repeated

reference in the remainder of the paper to the Robinson form R and its zero-set Z.
Robinson also gave the first explicit example in AV

f(@,9,2,w) = 2%z — w)* + y*(y — w)* + 22(z — w)? + 2zy2(z + y + 2 - 2w).

The proof that f € Ay 4 is not quite as simple as the proof for R € Aj¢, and f
has been replaced as the archetype of Ag4 by Q (see §4c). In the Appendix of
[77], Robinson gives a method for generalizing Motzkin’s example: if f is a real
polynomial in n variables with degree d < 2n that is not sos, then neither is

g(z1,...,zp) = xf---a:?,f(a:l,...,x,,) +1.

(Of course, g is not necessarily psd!) When n = 2 and f(z1,22) = 22 + 2% — 3, this
construction produces M(z,,zz,1).

c. Examples of Choi-Lam. In 1973, Man-Duen Choi was trying to classify
positive linear mappings—mappings between matrix algebras that preserve the cone
of positive semidefinite matrices. In the real case, this reduces to the cone of psd
biquadratic forms—quartic forms that are quadratic forms in two different sets of
variables. Choi learned of a paper [48, p. 14] by an electrical engineer, purporting
to show that every psd biquadratic form is sos. A recent paper of Calderén [7] had
covered some low-dimensional cases and convinced Choi that the result could not
be extended. He tried to find the flaw in the proof, and, in doing so, constructed a
counterexample (in [11]). He writes [12]: “Without Koga's false proof, I would not
have dared construct a counterexample. Actually, I had been haunted by Hilbert’s
non-constructive example [in [29]] when I was a graduate student.”

Choi’s counterexample was

F (21,2223 %1, Y2, 48) = o34 + 2305 + 2303 + 2230 + 22392 + 2232
=251 Zay1y2 — 221331 Y5 — 2T2T3y0ys.

Choi also specialized F' in [11] to give some other forms in A4 4 and AYY Y

Choi had a lectureship in Berkeley from 1973-1976, and started working with
Tsit-Yuen Lam, who had already written extensively on quadratic forms. The
following year, Choi and Lam wrote the first two papers devoted to a systematic
study of this subject: [14] and [15]. They made monomial substitutions in B :=
F — (2292 + 23y} + 23y?), which they proved to lie in Ag,6, and gave two more
simple explicit elements of Ay 4 and Ajg:

Q(z,y, z,w) := B(z,w, 2,y, 2z, w) = 2%y + 2222 + ¥222? + wt — dwzyz, .
S(z,y,2) := Blyz, zz,zy,z,y, z) = z'y? + y*2% + 2422 — 3z2y%22.

In each case, the fact that these forms are psd is immediate from the arithmetic-
geometric inequality, and the fact that these forms are not sos follows in a manner
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similar to that shown in §4a for M. Choi and Lam called this approach the “term-
inspection method”; it was later generalized [19] as the “Gram matrix method”,
which is described in §5b.

Choi and Lam constructed a number of other examples of psd forms that are
not sos. One is a symmetric quaternary quartic: 3 zfzf + Y ziziz) — 22202324
Another arises from making the substitution z; — z? in a quadratic form previously

studied by A. Horn:
H(or, o oo6) = (e + o+ o) — A(a3a3 + -+ ade? + olad)

(In this, the “Horn form”, z?z2 has coefficient ¥2 in H depending on whether or
not ¢ and j are adjacent in the set {1,2,3,4,5}, viewed cyclically.)

Let C C R* be a closed convex cone. An element z € C is called eztremal if
Z =1 +¥y2, ¥; € C, implies that y; = \;z for some \; > 0. Every element in a
closed convex cone C for which C N —C is the origin can be written as a finite sum
of extremal elements. Choi and Lam studied extremal elements in the convex cones
Pom and T, ;,. (As noted earlier, we can identify a form p € H,,(R™) with the
N-tuple of its coefficients, and so view L, ,, and P, m as subsets of RY.) Calderén
had also used extremality in studying psd biquadratic forms in [7].

Extremality has the following interpretations in the cones FP,mand X, ;.. The
form p € P, is extremal if and only if p = ¢, + g2 with g; € P, ,, implies that
g; = A;jp for constants \; satisfying \; + A\, = 1. In particular, if p(zy,...,z,) >
g(z1,-..,%,) > 0 for all (z,,...,z,) € R", then q is a scalar multiple of p. If
P € X m is extremal, then p = h? for some h € H,, /s2(R™), but this is not sufficient;
for example, (22+32)? = (2% —y2)2 4 (2zy)? is not extremal in %2,4- Some sufficient
conditions are discussed in [13]; it is not necessarily true that if A2 is extremal in
., m, then it is also extremal in R

Perhaps the most significant results in [14] and [15] were the proofs that the
forms M, R, S and Q are all extremal elements in their respective P, ,;'s. It is
remarkable that these early examples, chosen for their simplicity, are each extremal.
The basic argument of the proofs is straightforward. If p(u) = 0 for some u € R™,
then %(u) = 0 for all j, since pis psd. If p > g > 0 as above, then g(u) = 0
and so o%”;(u) = 0 as well. For example, setting p = R € P36, we find that the

zero-set Z imposes 3 - 10 linear equations on the (*3%7!) = 28 coefficients of gq.

Miraculously, this linear system has rank 27, and the only ternary sextics whose
derivatives vanish on Z are the multiples of R.

These paragraphs do not completely describe the contents of [14] and [15];
many of the ideas in these papers have yet to be fully developed.

My entry into the subject came in late 1976. I was studying the two-dimensional
Hamburger moment problem as it applied to an embedding problem in functional
analysis which had earlier arisen in my thesis—see [71, pp. 117-120] for details. I
found a reference to the abstract of [77) and was immediately captivated. My Duke
colleague Leonard Carlitz gave me his copy of [77] and I wrote to Prof. Robinson,
who directed me to the then-new [14] and [15]. I first met Lam at the 1977 AMS-
MAA Winter Meetings in St. Louis, and showed him a counterexample to a minor
conjecture in the preprint of [15]. I visited him at his Berkeley home that summer
and had the shortest four-hour conversation of my life. I enjoyed a post-doctoral
year at Berkeley in 1978-1979, and Choi, Lam and I have worked together (with
occasional fourth authors) ever since.
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d. Examples of Lax-Lax and Schmiidgen. Two other forms in A, ., were
discovered independently in the 1970’s. Anneli and Peter Lax [52] showed that

5
A(z1, T2, T3, T4, T5) 1= ZH(%‘ - z;),

i=1 j#i

which appeared on the 1971 International Mathematical Olympiad, is psd and not
sos. They observe that A is a polynomial in the z; — z;'s, so it is “really” a form
in four variables. (Olympiad contestants were asked only to prove that A is psd!)

Konrad Schmiidgen [80], following the program of Gel’fand-Vilenkin, produced
a sextic polynomial that homogenizes to a form in Agg:

q(z,y,z) = 200(:1:3—4:1:,22)2+200(ya—4yz"")2+(y2 —z2)z(z+2z)(:z:2—2:z:z+2y2—822).

The proof that g is psd involves decomposing R3 into ten regions; the proof that ¢
is not sos involves the eight zeros of g, as predicted by Hilbert’s original argument.

5. Some later developments

a. Zeros of psd forms and multiforms. My first collaboration with Choi
and Lam, [16], was largely concerned with the number of zeros of psd forms. Recall
that R has the ten zeros of Z. We showed that if p € P3¢ and p has more than
ten zeros, viewed projectively, then p is divisible by the square of an indefinite form
and p is the sum of three squares of ternary cubics. If P € P3¢ has exactly ten
zeros, then it cannot be sos. Moreover, if p € P3 -, has more than m?/4 zeros, then
it is either not sos or is divisible by the square of an indefinite form. If pE Py,
has more than eleven zeros, then it has infinitely many zeros, and is the sum of six
squares of quaternary quadratics.

Not every set of ten points (counted projectively) in R3 can be the zero-set
of some form p € P3¢, but Z is not the only possibility. Here is a previously
unpublished example. For the real parameter a > 0, let

fa(z,y,z) = a4(z6 + y6 + 26)
+(1 i 2(16)(24y2 + y4z2 + 24.'232) + (aB el 2(12)(22]/4 +y224 + 22.'234)
—3(1 —2a® + a* — 205 + a®)z?y?22.

Then fo = S (see §4c), fi = R, and it can be shown that fa€lzgfor0<axi
with the following ten zeros: {(1,+1,+1), (+a, 1,0),(0,+e,1),(1,0,+a)}.

A multiform of type (n,,... yPriMi,...,my) is a form in ) n, variables in r
blocks—{z13,...,21.4,;... 3Zr,15+ s Zr.n, }—80 that for each fixed k, every term in
the form has degree m; in the zj ;'s. It is shown in [16] that a psd multiform of
type (ny,...,n,;m,,...,m,) must be sos if and only if its type is (2,n;m,2) (or
(n,2;2,m)). The counterexamples were closely based on  and S. The fact that
a psd multiform of type (2,n;m,2) is sos was already known: it is the assertion
that an n-ary quadratic form Ei,- Jis(n,y2)ziz; (fi; € Hn(R?)) that is psd for
every fixed (y1,2) is a sum of squares of forms that are R[y1, y2)-linear in the z;’s.
This had been proved by Djokovié, Jakubovié, Popov, and Rosenblum-Rovnyak in
somewhat different contexts (see [16] for details and references). Calderén [7] had
also proved it in the special case m = 2.

—— e
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b. The Gram matrix method. If a = (ayy...,an) € N*, we shall write
z® =z7*--- 23 and |o| = 37, ax. Suppose

f(@1,..y20) = ) cla)z™ € Ha(R™),

ler]=d

and let C(f) = conv({e : c¢(a) # 0}) C R denote the Newton polytope of ;e
is a subset of the simplex whose vertices are dex. It was proved in [68] that, if
p= Y, ki, then 3C(p) 2 C(hs). In the Motzkin example, C(M) is the triangle
whose vertices are (4,2,0), (2,4,0), (0,0,6), so if M = 3« hZ, the monomials in h;
must come from the lattice points contained in the triangle with vertices (2,1,0),
(1,2,0) and (0,0,3). This triangle has one non-vertex lattice point, (1,1,1), and
the corresponding monomials are z%y, 232, z° and zyz. In this way, the first part
of the term-inspection method can be automated.

The rest of the term-inspection method is formalized in [19] into the “Gram
matrix” method. Suppose p(z) = ¥, az® € P, 24 and p(z) = Zi=1 hZ(z), where
hi(z) = Zﬁuf,k)zﬂ € Hy(R™) for 1<k <t. Let Ug = (u(l),. e ,ug)) € Rt. Then

t t
> az® =p(z) = 3" hi(x) = Z( > "2"’2") ( > u,‘f,’zﬁ’)
b |al=2d k=1 k=1 lﬂl=d |ﬂ'l=d
= Z (Us - Ug)zP+* .
181,18 |=d

By comparing the coefficients of 2 in p and 3« hZ, we see that

aa= Y Ups-Up.
B+B'=a

Conversely, if there exist vectors {Ug} C Rt satisfying these equations for all o,
then we can write p as a sum of ¢ squares by using the coordinates of the Ug's as
the coefficients of the hx’s. The dot-product matrix [Us - Ug] is called the Gram
matriz associated to the expression p = ", h?. In order to state the main result
of the Gram matrix method, we first recall that a Ssymmetric matrix can serve as
the set of dot products of vectors in R? if and only if the corresponding quadratic
form is psd with rank at most ¢. We also define the length of an sos form p to be
the smallest number of forms h;, required to write p = 3~ h2.
The following theorems are proved in [19, p. 106):

(1) Suppose p(z) = Y, aqz®, and let V = (vgs') be a real symmetric matrix.
The following statements are equivalent:

(A) p is a sum of squares and V is a Gram matrix associated to P (with respect
to some expression p = Y, h?);

(B)Vispsdand Y. wgs =a, for all a.

B+P =a

(2) If pis a sum of squares, then the length of p is equal to the minimum rank of
V, where V ranges over all Gram matrices associated to D.

Very recently, Powers-Wérmann [65) constructed an algorithm that implements
the Gram matrix method.
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c. Generalizations of M and S. The quadrinomial property of the coun-
terexamples M and S is best possible. It was proved in [68] that any psd form that
is not sos has at least four terms. Moreover, if p € Aq,m has four terms, then it is
extremal in P, , if and only if, after a linear scaling of the variables zj — 0;Tj, we
have p(z) = 228 + 2% + 72¢ — 3224 where a,b,c € Z7% have the following geometric
property: if T is the triangle with vertices a, b, ¢, then TNZ" must equal {a,b,c,d},
where d = %(a + b+ c) is the median of 7. This implies the extremality of the
forms M (with a = (2,1,0), b = (1,2,0), ¢ = (0,0, 3), d = (1,1,1)) and S (with
a=(2,1,0), b=(0,2,1), ¢c=(1,0,2),d = (1,1, 1)).

An agiform (see [70]) is a form derived by making even monomial substitutions
into the arithmetic-geometric inequality. Suppose a; € (2Z)% and ); are positive
reals, 3, A; = 1, so that }°, Mia; = b € Z". Then the agiform 3", A\;z% — z* is psd
as a consequence of the arithmetic-geometric inequality. Necessary and sufficient
conditions are given in [70)] for an agiform to be so0s, and necessary and sufficient
conditions are given for an agiform to be an extremal psd form. These conditions
depend heavily on the combinatorial structure of the lattice points contained in the
simplex with vertices a;. This paper also contains six explicit families of extremal
psd forms in n variables, two each generalizing M, S and Q; three of these families
were defined in [15] and proved there to be psd but not sos.

One consequence of the sos characterization of agiforms is that, if p(z,,...,z,)
is an agiform and r > n, then p(z7,...,z7) is sos, 80 p is a sum of squares of forms in
the variables .z',l‘/ ”. This property is not true for all psd forms. If H ¢ Asj 4 denotes
the Horn form (see §4c), then it can be shown that for everyr > 1, H(z],...,zL) is
not sos. A related question involves taking odd powers of psd forms. Stengle [81)
proved in 1979 that for m > 1, every odd power of

2m+1_2m+1 2,.2m—1 2m+1
z " ey 4 (2222mt g2l g g

gm)2
is psd and not sos. It can be shown that this property also holds for the odd powers
of S(zlv T2, .'l:3) and M(zl: 22,23)'

d. Symmetric Examples. One obstacle to understanding the geometry of
Pom and L, is that these cones lie in RY for N = (**™=1);if A, . # 0, then
N > 28. One way to overcome this obstacle is to take sections of lower dimension.
This suggests a study of even symmetric forms. Every psd even symmetric form of
degree 2 or 4 is 508, so the simplest “interesting” case is m = 6; psd and sos even

symmetric n-ary sextics were analyzed in [17]. Such a form p can be written

n
p(:z:l,...,:z:,,)=aZz§+ﬂZz§z§+'y Z z?zfz,zc
i=1

i#] i<j<k

It is more convenient to express p in terms of a different basis: write

n n n n 3
p(zy,...,z,) = aZz? +b(2z;‘) (sz) + C(fo) .
i=1 i=1 i=1 i=1
(These two expressions for p are related bya=a+b+ec, f=0b+3c vy = 6c.)
Let p*(t) = a + bt + ct? and let v(*) denote any n-tuple whose coordinates consist
of k 1’s and n — k 0’s. Note that p(v*)) = gk + bk2 + ck3 = kp*(k), hence an
immediate necessary condition that p be psd is that p*(k) >0 for k =1,2,... , M.
This is also a sufficient condition: p is psd if and only if it is nonnegative on the

e

T e e

e ———
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“test set” {v(V),... ,9(W}. The necessary and sufficient condition that p be sos is
that p*(¢) > 0 for ¢ € {1} U [2,n]. (There is no obvious interpretation of p*(t) in
this case; one might imagine that p* (v®) represents “evaluating” p at an “n-tuple”
which has a non-integral ¢ number of coordinates equal to 1, and the rest equal to
0.) For the Robinson form, a direct computation using the change-of-basis formulas
given above shows that R*(t) = 3(2—1)(3 — t); since R*(t) < 0 for 2 < t < 3, this
gives another proof that R is not sos.

William Harris [36] studied even symmetric octics (m = 8) and even symmetric
ternary forms (n = 3). One surprising result is that every psd even symmetric
ternary octic is sos. Harris gives test sets that determine whether an even n-ary
symmetric octic or ternary decic (m = 10) is psd, and a list of all the extremal even
ternary symmetric octics, as well as many new examples in Az ;0 and Ayg.

We mentioned [18] earlier, in the context of showing that R is psd. This paper
contains an extensive discussion of symmetric ternary forms. The possible sides of
a triangle can be parameterized (a,b,c) = (22 + 32,22 + 22,2 + 22) in view of the
triangle inequality, so any symmetric polynomial inequality satisfied by the sides
a,b,c of an arbitrary triangle can be interpreted as a psd even ternary symmetric
polynomial and vice versa. Harris [36] gives all symmetric polynomial inequalities
of degree at most five satisfied by the sides of an arbitrary triangle.

6. Pélya’s Theorem

In 1928, George Pélya [83] (see also [35, pp. 57-59]) gave an explicit solution
to Hilbert’s 17th Problem for even positive definite forms p € P, 24; that is, for
those positive definite forms p that can be written p(z1,...,2.) = f(23,...,22)
for some f € Hy(R™). )

Suppose f(y1,...,ya) > 0 for y €A, = {ijj =192>20 1<j<n}
Pélya constructs a sequence of polynomials {f¢} that converges uniformly to fon
the compact set A, as t — oo; hence, for t > tg := to(f) and y € A,, we have
ft(y) 2 0. Elementary combinatorial manipulations give (for positive integers )

5, W G n
(Z%) f(yl,...,y,,) =r!(r+d)d Z f‘r+d(r+d’-.-’r+d)yj.
i=1

izrra  J1lecdel

Since (;'+‘7—d, s, ;7;;_13) € Ay, the form (3 4:)"f(31,...,ys) has positive coefficients
when 7 > to(f) — d.

Another way of viewing this result is that any form f that is positive on A,, can
be written as the quotient of two polynomials with positive coefficients, where the
denominator is a power of >, ¥i. Without this specification on the denominator,
this result had been proved by Poincaré [62] in 1883 (the date is wrong in [35)) for
n = 2 and by Meissner [55] in 1911 for n = 3.

Upon replacing y; by 22, A,, becomes the unit sphere, and Pélya’s Theorem
implies that if p is positive definite and even, then for sufficiently large r,

(gxf) rp(zl, ey Tp) ]

is a sum of monomials with positive coefficients. Since each monomial in the prod-
uct uses only even exponents, it follows that (3=22)"p(z1,...,2,) is & prima facie
sum of squares of monomials. And since the coefficients in the product evidently
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come from the same field as the coefficients of p, Pélya’s Theorem gives a con-
crete, constructive solution to Hilbert’s 17th Problem in the special case that p
is even and positive definite. Pélya remarks on the significance of his result (63,
p- 144]: “Es kann schliesslich bemerkt werden, dass die Darstellung einigermassen
in Zusammenhang mit einer Fragestellung von Hilbert steht, die kiirzlich durch E.
Artin mit tiefgehenden Mittleln gel6st wurde.”

In 1940, Habicht [31] (see also [35, pp. 300-304]) used Pélya’s Theorem to prove
directly that a (not necessarily even) positive definite form is a sum of squares of
rational functions. The denominators in the representation are positive definite,
but are no longer easy to compute; in particular, they are no longer necessarily
powers of 3. z?. The coefficients, however, are still in the original field. (It was
erroneously stated in [23, p. 90] that Habicht proved that the denominators are
powers of 3, zZ; I thank Delzell for informing me of this error.) A key step in the
proof of Habicht’s Theorem is the observation that, if p € P, 24 is positive definite,
then the following positive definite form of degree 2"d is even:

636 a o) e H p(z1,€222,...,€6,T0).
ex=%1 b

Motzkin and Straus [68] partially generalized Pélya’s Theorem to power se-
ries in several variables, and discussed some related algebraic questions. Catlin
and D’Angelo [9, 10] have recently generalized Pélya’s Theorem (with denomi-
nator information) to polynomials in several complex variables. Handelman (32,
33)] answered a related question. Suppose a polynomial p in several variables has
nonnegative coeflicients. For which f does there always exist an r so that " f has
nonnegative coefficients? Recently, De Loera and Santos [54) have turned Pélya’s
Theorem into an explicit algorithm, and made quantitative estimates for to(f).

The restriction to positive definite forms is necessary. There exist positive
semidefinite forms p that have the remarkable property that, in any representation
P =), #%, where ¢y = f /9k is a rational function, each g, must have a specified
non-trivial zero. The existence of these so-called “bad points” insures that (3 z2)"
can never be a sum of squares of forms for any r. Habicht’s Theorem implies that
no positive definite form can have a bad point. Bad points were first noted by
E. G. Straus in an unpublished 1956 letter to G. Kreisel. An extensive history of
this topic can be found in Delzell’s thesis [22], and in his [25, 26). An example
from [22] is D(w,z,y,2) := w?S(z,y,2) + 28, where S € Asg is defined in §4c.
It is easy to show that D has a bad point at (w,z,y, z) = (1,0,0,0). Suppose
g € Hy(R%) and ¢q(1,0,0,0) = ¢ # 0. Then the leading term of ¢?D (regarded as
a polynomial in w with coefficients in R[z,y, 2]) is 2w?#+2S(z,y, z). Suppose now
that h2D = Y h? is a sum of squares of forms. Then w occurs in hy with degree
< d+1, and if we denote the w?*!-term in hy by hy(z,y, z)wit!, it follows that
32S(z,y,2) = 3°x h2(z,v, z). This implies that S is sos, a contradiction.

7. Uniform denominators in Hilbert’s 17th Problem

The final section of this paper is devoted to a sketch of the proof of the main-the-
orem in [72}: if p € Py, is positive definite, then for sufficiently large >z
is a sum of squares. That is, Pélya’s conclusion about the shape of the denominator
holds under Habicht’s weaker hypothesis on p. Moreover, if p € H,(K™) is positive
definite, then for sufficiently large r, (3" z?)"p is a positive linear combination over

R = e e

——————
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K of a set of (2r + m)-th powers of linear forms with rational coefficients, in which
the linear forms depend only on the parameters m,r,n and not the form p. (Ellison
[28] showed in 1969 that for all (n,m), m > 4, there are forms in X, ,, that are
not a sum of powers of linear forms, so the conclusion about (3" z?)"p is stronger
than that it is sos.) Each component of the proof is, or could have been, familiar
to Hilbert. For much more on this subject, see [64, 71, 72]. The construction will
be concrete enough to give an explicit representation for Becker’s B(t) (see §3c) as
a sum of 2k-th powers over R, but, unfortunately, not over Q.

Write G (21,...,%n) = 22 + -+ - + 22. We shall say that an algebraic identity

N
G:z(zly e ,.'l:n) — (.'E% +-oot .'E?‘)‘ = ZAk(aklzl QPO20g P aknz‘n)2s1
k=1

where 0 < Ax and ax; € R, is a Hilbert Identity. As part of his solution of Waring’s
Problem, Hilbert [42] proved that Hilbert Identities exist for every n and s, with the
additional algebraic property that Ax, ax; € Q. We shall call these rational Hilbert
Identities. There are no known families of ezplicit rational Hilbert Identities for
arbitrary n, s, although they are not hard to find for s = 1,2,3; see [71, §8, 9].
Hausdorff [37] gives explicit Hilbert Identities for all (n, s), using the roots of the
Hermite polynomials; these are not, in general, rational. A simpler non-rational
family based on trigonometric identities will be used below for n = 2.

Hilbert actually only showed the existence of rational Hilbert Identities for n =
5, but his method applies for all n. He also showed that rational Hilbert identities
exist with N < (""'2"1) Nathanson [59, pp. 75-85] gives a clear modern exposition
of [42], including a discussion of Hausdorff’s construction. An alternative, self-
contained proof of the existence of rational Hilbert Identities, together with some
generalizations, is contained in [72, pp. 95-96).

The key to the proof is the differentiation of both sides of a (rational) Hilbert
Identity. To be specific, if h € Hy(R"™), define the associated d-th order dnferentml
operator h(D) by replacing each appearance of z; by 8‘2 ; thus, G, (D) = 21 E’
A, the Laplacian. Fortunately, there already were known formulas to compute the
effect of h(D) on both sides of a Hilbert Identity.

In the 19th century, Sylvester and Clifford developed the method of “contravari-
ant differentiation”. As one consequence, if h € Hy(K™) and d < m, then

h(D) D Me(ak1zr + -+ + QnZn)™
k
= (m)q E Ach(agy, ..oy pn)(@k1T1 + -+ - + agazn)™ 4
k

(Here, (a); denotes the falling factorial a(a — 1)---(a — (¢ — 1)).) This identity is
not hard to prove. It suffices to consider a single m-th power, and by linearity, it
suffices to consider h(x) = z*. But then k(D) is a product of successive aa 's, and
the formula is immediate by the Chain Rule.

It is somewhat more difficult to evaluate h(D)G%. Each dlﬁerentlatlon reduces
the exponent of G, by at most one, so G5~¢ divides h(D)G?. This suggests the

notation
h(D)G:, = ®,(h)G574,

e
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where ®,(h) has degree 25 —d—2(s—d) = d. Thus &, is a linear map from Ha(R™)
to itself. An explicit formula for &, follows from Hobson’s Theorem: if h € Hy (R™)
and F is any “sufficiently” differentiable function of one variable, then

d
MDIF(Gn) = Y s A*(WFE-P(G,)
k>0 ’

The right-hand side is a finite sum; if k¥ > d/2, then A*(h) = 0. Hobson’s Theorem
is proved in [43, 44], see also [45]; it was lauded by Hardy [34] as an “elegant
theorem in formal differentiation”. Now, set F(t) = ¢*, so FO)(t) = (s);t°- 7

92k=df] 22k=dg)

KD)G, =" E’EEA"(h)G:;-‘“k = (Z %Ak(h)cﬁ) Geadl
k>0 k>0

Thus,

2, (1) = Y ok Ak GE,
k>0

Putting this all together, we see that k(D) applied to a Hilbert Identity gives:

N
h(D)G; = h(D) (Z Ak(aklxl 4.4 aknxn)%);
k=1

N
®,(R)GR = (28)a Y Mh(a1, - .., Qkn)(@h1Zy + -+ - + Cpnn) 24,
k=1

Now set 7 = s — d. We see that ®,(h)GY, is a linear combination of (2r + d)-th
powers of linear forms. If h happens to be psd with coefficients in K , 80 d is even,
then &,(h)G}, is a positive linear combination over K of (2r +d)-th powers of linear
forms, each of which is, per se a square. Thus ®,(h) can be written as a sum of
squares of rational functions with denominator G%/2. The proof will be complete if
we can show that, if p is positive definite, then h = @, !(p) is also positive definite
for sufficiently large s.

The formula given below for ®;(p) is apparently new to [72], but is well within
the grasp of Hobson’s techniques. If s > d, then

1y 1 (-1)¢
") = G X Rl

2+s-1)
et AP)G, A2p)2
_(8)d2d(p_2(n+2s—2) 8(”+23—2)(n+23_4)_"')-

This sum is also finite; if £ > m/2, then A*(p) = 0. If p € Hy(K™), then it is not
hard to see that
}_ifgo(s)dqu’.— Y(p) =p.

Thus, if p is positive definite, then so is @, (p), for sufficiently large s.
The preceding can be made quantitative. If p is positive definite, let

_ inf{p(u) : u € S"1}
«(p) = sup{p(u) : u € S7-1}

e = PSS —

e —————
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measure how “close” p is to having a zero. After some pleasant estimates omitted
here, including one comparing the Lo, norms of p and Ap on S™!, it can be shown

that if p € P, ,, is positive definite and s > (Z';g;):(lg) n=m . then @, (p) € Puym.

THEOREM. Suppose p € H,,(K™) is positive definite. If r > &;%;ﬁz% aim,

then pG, is a nonnegative K-linear combination of a set of (m + 2r)-th powers of
linear forms in Q[z,,...,%,]. This set depends only on n, m and r.

The last sentence above is based on the fact that the linear forms come from the
origina.l rational Hilbert Identities. Interestingly, the analysis of Pélya’s Theorem

in [54] also shows a dependence of ¢y(f) on e(f)~!.

Let P(‘) be the set of p € P, so that ¢(p) > ¢; observe that P,,, =
Ueso Pr ( ). For each ¢ > 0, the Theorem implies that if p € P, f(f,)n, r> E(LI%IF)
24 s even and Gt = Y Ag(ay - £)2™+2", then after applying (®;}.,(p))(D)
a.nd clearing fractions, we obtain

2
(k1T + -+ + CknTn) ™/
p(zly-.-yz‘n) = ZAk(p) ( ($%+ "’+$1%.)r/2 )
k

where Ax(p) > 0 is linear in p.

There has been considerable interest in the representations of p as a sum of
squares of rational functions with continuous dependence on p, such as the one
given above; see [24, 27]. Such a formula cannot hold over all of P, ,,. It is not
hard to show that if p € P, ,, is not positive definite, then pG”, cannot be written
as a sum of (2r 4+ m)-th powers of linear forms over R. The interested reader is
referred to [72] for details.

The Theorem also gives concrete information about sums of 2k-th powers of
rational functions. The following Corollary (without the specification of the de-
nominators) can be given an abstract proof using Becker’s methods.

COROLLARY. Ifp € K|z1,...,Zn] is a positive definite form of degree m = 2kt,
then p is a nonnegative K-linear combination of 2k-th powers of rational functions
in Q[zy,...,2,] whose denominators are powers of G,. If p and q are positive
definite forms in K[z,,...,z,] and degp — degq is a multiple of 2k, then p/q is
a nonnegative K-linear combination of 2k-th powers of rational functions whose
numerators are in Q[z1,...,z,] and whose denominators are products of powers of
G, and q.

We conclude this paper with a sketch of an explicit formula for B(t) as a sum
of 2k-th powers. We start with the simple observation that

1482 (1+83)(2412)21
2+12 (2+12)2k

B(t) =

hence if we can write (1 +¢2)(2 + ¢2)¥~! and (2 + t2)* as sums of 2k-th powers of
linear polynomials, then their product is a sum of 2k-th powers of quadratics, each
of which can then be divided by 2 + t? to give B(t) as a sum of 2k-th powers of
rational functions.
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There is an explicit family of Hilbert Identities for n = 2. If v > s + 1, then

2s v—1 . . .
& 407 = Sy D (eon( )z +in(5)0)"
8/ j=0

For a proof, see (71, p. 124].) By taking s =k, v = k+2,z = V2, y = ¢ and
applying the explicit formula for ;! given above, we obtain after several pages
of computation a formula for B(t). Let L;(x,y) = (cos &)z + (sin ;55)y and
Aj =3k - (k+1)cos(%_%) for 0< j<k+1. Then

- k+1k+1 2k
2+t k(k + 2)2 (2:) i=0 =0 2+t

Although this gives B(t) as a sum of 2k-th powers in R(), the summands are not in
Q(). Such a representation cannot yet be found by these methods, because there
is no known explicit infinite family of rational Hilbert Identities for n = 2.
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